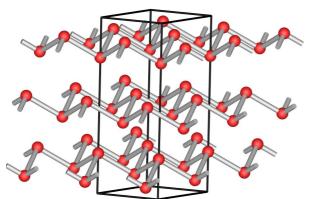

1. Bau von Festkörpern: Atomare und elektronische Strukturen

1.1. Idealkristall

1.1.1. Bindung, strukturbestimmende Größen


Bindung	kovalent	ionisch	metallisch	
Σ EN	groß	mittel	klein	
Δ EN	klein	groß	klein	
Energiegew.	LCAO (je 2 AO)	IE, EA, Coulomb	LCAO (alle AO)	
Reichweite	kurz (2 At.)	mittel	lang	
Bindung	gerichtet	ungerichtet		
CN	1 bis 4	4 bis 8	8 bis 24	
'Radien'	kov. Einfachbindungsradien	Ionenradien	metallische Radien	
	vdW-Radien			
einfache	8-N-Regel	Pauling-Regeln	dichteste Packung	
Struktur-	VSEPR	dichte Packungen der Anionen		
Konzepte	Wade-Regeln	mit besetzten Lücken		
Darstellung	Valenzstrichformeln	kondensierte Kationen-	?	
der Struktur	Stick-and-Ball	Koordinations-Polyeder (kKP)		
Eigenschaften	meist anisotrop	seltener anisotrop	meist isotrop	
Bauverbände	1-, 2- oder 3-dimensional	meist 2- oder 3-dimensional	nur 3-dimensional	
Eigenschaft	sehr hart	hart, spröde	duktil	
bei 3-dim. Verb.	Isolatoren bis HL	elekt. Isolatoren	Leiter	

Bandlücken in verschiedenen Energieeinheiten

1.1.2. Kovalente Festkörper

Beispiel: Pnicogene

	d_{X-X}^{1}	d_{X-X}^2	$\angle X-X-X$	Band-
	intramol.	interm.		lücke
	[pm]	[pm]	[o]	[eV]
P_4	221		60	
P (Hittorf)	222		100.9	
P (schwarz)	222	331	96-102	
P (83 kbar)	213	327	105	
P (111 kbar)	238	238	90	
As (A7)	252	312	97	klein
Sb (A7)	291	336	95	0
Sb (85 kbar)	296	296	90	0
Bi (A7)	307	353	95	0