Kristallstrukturen aus Pulverdaten: Möglichkeiten und Grenzen der Rietveld-Methode

Internes Seminar, 17.6.2008, C.R.

Inhaltsübersicht

- 1. Einleitung
- 2. Grundlagen der Rietveld-Methode
- 3. Experimentelles (Probenpräparation, Diffraktometer, Messung)
- 4. Programme für Rietveldverfeinerungen
- 5. Verfeinerungsstrategie
- 6. Beispiel
- 7. Grenzen der Methode
- 8. Zusammenfassung und Literatur

• Einleitung: Methoden und Anwendung der Pulverdiffraktometrie

Methode	20	I_{max}	I_{int}	Profilform
Qualitative Phasenanalyse				
Indizierung				
Gitterkonstantenverfeinerung				
Quantitative Phasenanalyse				
Solid-Solution Analyse				
Kristallinität				
Streß (isotrop)				
Streß (anisotrop)				
Kristallitgröße				
Zwei-Schritt Strukturverfeinerung				
Rietveld-Strukturverfeinerung				

Historisches

- Rietveld-Methode, auch PFSR (Pattern-Fitting structure refinement)
- entwickelt 1967 und 1969 von Hugo Rietveld (*1932)

- ab ca. 1980: ausreichend leistungsf\u00e4hige Rechner → div. Programmsysteme auf Basis der Quellen von H. Rietveld
- ab ca. 1990: Programmsysteme mit grafischen Front-Ends

Prinzip

- Least-Squares-Verfeinerung freier Parameter eines theoretischen Pulverdiagramms gegen alle Meßpunkte des beobachteten Diagramms
- freie Parameter
 - Strukturparameter (Gitterkonstanten, Atomkoordinaten usw.)
 - Untergrund- und Profil-Parameter
- zur Beschreibung von
 - Struktur (ggf. auch mehrerer Phasen)
 - Probe: Kristallinität, Kristallitgröße, Streß usw.
 - Geräte- und aufnahmespezifische Parameter

Vergleich mit der Einkristall-Methode

- Vorteile gegenüber Einkristall-Methode
 - pulverförmige Probe ausreichend
 - ◊ (schnell)
 - einfachere Druck/Temperatur-abhängige Messungen
 - sehr genaue Bestimmung der Gitterparameter
 - 'optisches' Verfeinerungsverfahren
 - quantitative Phasenanalyse

◇ ...

- Nachteile gegenüber Einkristall-Methode
 - i.a. keine Strukturbestimmung
 - viele 'Nicht-Struktur'-Parameter
 - Probleme bei sehr großen Zellen (Reflexüberlappung)
 - Korrelationen
 - ◇ ...

Voraussetzungen

- Probe
 - möglichst einphasig, bzw. mit bekannten Fremdphasen
 - ohne Vorzugsorientierung präpariert bzw. mit bekannter Vorzugsorientierung
- Messung
 - Röntgen (Röhre, Synchrotron), Neutronen, ...
 - ◇ CW oder TOF
- Struktur
 - Kristallsystem, Gitterkonstanten, Raumgruppe bekannt
 - ausreichende Zahl von Atomkoordinaten bekannt

② Grundlagen der Rietveld-Methode

Prinzip: Minimierung (per Least-Sqaures-Verfahren) der Differenz S

$$S = \sum_i w_i |y_{io} - y_{ic}|^2$$

- mit i i-ter Schritt (θ) der Messung
 - y_i Intensität am Ort i

Flächenhäufigkeit

für den Reflex k

Lorentz-Polarisations-Faktor

m⊾

L

- yio beobachtete Intensität am Ort i
- yic berechnete Intensität am Ort i
- w_i Wichtungsfaktor: $\frac{1}{w_i} = \sigma_i^2$
- σ_i Standardabweichung des Meßwertes y_i

zwischen den

beobachteten Intensitäten y_{io} an den Orten (θ oder Schritt) i

und den

 berechneten Intensitäten y_{ic} am Ort i (Summe aller Braggreflexe k an dieser Stelle und dem Untergrund y_{ib})

$$y_{ic} = s \sum_k m_k L_k |\mathsf{F}_k|^2 \mathsf{G}(2\Theta_i - 2\Theta_k) + y_{ib}$$

mitkBragg-ReflexF_kStrukturfaktor: $F_{\tilde{k}} = \sum_{j=1}^{N} f_j e^{2\pi i (k \tilde{x}_j)}$ sSkalierungsfaktor Θ_k berechnete Position des Bragg-Reflexes k y_{ib} Untergrundintensität am Ort i $\Delta \Theta_{ik}$ $=2\Theta_i - 2\Theta_k$

 $G(\Delta \Theta_{ik})$ Profilfunktion des Reflexes k

(2)

(1)

Reflex-Profile

Breite und Form des Reflexes hängen ab von Θ und ...

- gerätespezifischen Parametern
 - ♦ Strahlungsquelle
 - Wellenlängenverteilung im Primärstrahl (Monochromatorkristall)
 - Strahlcharakteristik (Kollimation: Blenden usw. zwischen Quelle, Monochromator, Probe und Detektor)
 - Detektorsystem
- Probe
 - ◇ Kristallitgröße
 - ♦ Kristallinität

◇ ...

Profil-Funktionen

zur Beschreibung der Profile \mapsto verschiedene analytische Profilfunktionen $G(\Delta \Theta_{ik})$

Gebräuchliche Profil-Funktionen

• Gauß (G)

$$\frac{\sqrt{4\ln 2}}{\sqrt{\pi}H_k} \left(e^{-4\ln 2X_{ik}^2} \right)$$

• Lorentz (L)

- Voigt (V): Faltung von Gauß und Lorentz
- Pseudo-Voigt (pV)

$$\eta \underbrace{\left(\frac{\sqrt{4}}{\pi \mathsf{H}_{\mathsf{k}}}\right) \left(\frac{1}{1+4\mathsf{X}_{\mathsf{i}\mathsf{k}}^{2}}\right)}_{\mathsf{Lorentz}} + (1-\eta) \underbrace{\left(\frac{\sqrt{4\ln 2}}{\sqrt{\pi}\mathsf{H}_{\mathsf{k}}}\right) \left(\mathsf{e}^{-4\ln 2\mathsf{X}_{\mathsf{i}\mathsf{k}}^{2}}\right)}_{\mathsf{Gau}\mathsf{B}}$$

(3)

(4)

 $\diamond \ 0 \leq \eta \leq 1$

• Pearson VII (PVII)

$$\left(\frac{\Gamma(\beta)}{\Gamma(\beta-\frac{1}{2})}\right) \left(\frac{2^{1/\beta}-1}{\pi}\right) \frac{2}{\mathsf{H}_{\mathsf{k}}} \left(1+4(2^{1/\beta}-1)\mathsf{X}_{\mathsf{i}\mathsf{k}}^{2}\right)^{-\beta}$$

- ♦ bei $\beta = 1 \mapsto \text{Lorentz}$
- \diamond bei $\beta = \infty \mapsto \operatorname{Gau} \beta$

(6)

H bzw. L/G-Anteil als $f(\Theta)$

Haupteinflüsse auf die Form des Reflexprofils

- Röntgenquelle (~ Gauß-Verteilung)
- spektrale Dispersion (\sim Lorentz-Verteilung)

Konsequenzen

- ① H steigt mit 2 θ
- ② Form der Reflexprofile:
 - bei niedrigen Beugungswinkeln: Gauß-Verteilung
 - bei größeren Beugungswinkeln: Lorentz-Verteilung

H bzw. L/G-Anteil als $f(\Theta)$

Berücksichtigung

- ① H_k wird mit Θ vergrößert, wobei
 - für die Gaußkomponente

$$\mathsf{H}_{\mathsf{k}}^{\mathsf{GauB}} = \sqrt{\mathsf{U} \tan^2 \Theta + \mathsf{V} \tan \Theta - \mathsf{W}}$$

• für die Lorentzkomponente

$$H_k^{Lorentz} = X \tan \Theta + \tfrac{Y}{\cos \Theta}$$

U, V und W bzw. X und Y: freie Parameter

- ② bei Wahl von PVII, V und pV durch θ -Abhängigkeit des Mischungsparameters
 - pV (Mischungsparameter η)

$$\eta = \mathsf{N}\mathsf{A} + \mathsf{N}\mathsf{B}(2\theta) \tag{9}$$

(7)

(8)

• PVII (Mischungsparameter β)

$$\beta = \mathsf{N}\mathsf{A} + \frac{\mathsf{N}\mathsf{B}}{2\theta} + \frac{\mathsf{N}\mathsf{C}}{(2\theta)^2} \tag{10}$$

Asymmetrie von Reflexprofilen

Berücksichtigung durch

- Split Profile Function
- z.B. Split-Pearson VII-Funktion: getrennte Verfeinerung von H₁ und H_r bzw. β_1 und β_r

Untergrundfunktionen

Möglichkeiten zur Ermittlung der Untergrundfunktion ybi

• Entwicklung als Potenzreihe (wichtigstes Verfahren)

$$y_{ib} = \sum_n b_n (2\Theta_i)^n$$

(11)

mit b_n freie Parameter

- u.U. mit der manueller Vorgabe von 'Stützstellen'
- Untergrund komplett 'von Hand'

Parameter \longleftrightarrow Beobachtungen

Parameter der LS-Verfeinerung

- Gesamtskalierungsfaktor (1)
- Strukturparameter (ca. 5-300 pro Phase)
 - Gitterkonstanten
 - Atomparameter
 - Lageparameter (x,y,z)
 - 'Temperaturfaktoren' U
 - Besetzungsfaktoren
 - Vorzugsorientierung
- Parameter der Profilfunktion $G(\Delta \Theta_{ik})$ (ca. 2-20)
 - Kristallgröße und Kristallinität (über Profil-Parameter)
 - Asymmetrie
- Parameter der Untergrundfunktion y_{ib} (ca. 2-20)
- Nullpunkt
- Absorption
- ...

Beobachtungen

• y_{io} (ca. 1000-50000)

Parameter \longleftrightarrow Beobachtungen

Beobachtungen

• y_{io} (ca. 1000-50000)

Problem

Korrelationen

Abhilfe

- Dämpfung
- Constraints oder Restraints ('Soft Constraints') für Bindungslängen, Bindungswinkel usw.
- Block-Diagonal-Verfeinerung

Güte der Verfeinerung

Parameter zur Beurteilung der Güte der Verfeinerung:

Profil-R-Wert

$$R_{p} = \frac{\sum_{i} |y_{io} - y_{ic}|}{\sum_{i} y_{io}}$$
(12)

• gewichteter Profil-R-Wert

$$R_{wp} = \sqrt{\frac{\sum_{i} w_{i} (y_{io} - y_{ic})^{2}}{\sum_{i} w_{i} y_{io}^{2}}}$$
(13)

• Bragg-R-Wert

$$\mathsf{R}_{\mathsf{B}} = \frac{\sum_{i} |\mathsf{I}_{\mathsf{ko}} - \mathsf{I}_{\mathsf{kc}}|}{\sum_{i} \mathsf{I}_{\mathsf{ko}}} \tag{14}$$

'Expected' R-Wert

$$R_{E} = \sqrt{\frac{(N-P)}{\sum_{i} w_{i} y_{io}^{2}}}$$

(15)

- N: Zahl der Beobachtungen
- P: Zahl der freien Parameter
- Goodness of Fit

$$\mathsf{GofF} = rac{\sum_i w_i (y_{io} - y_{ic})^2}{N - P} = rac{\mathsf{R}_{wp}}{\mathsf{R}_E}$$

(16)

Gefahr von Korrelationen

- Differenzen $\Delta_i = y_{io} y_{ic}$ sind korreliert
- Test auf das Ausmaß dieser Korrelation (Durbin-Watson d-Statistik)

$$\mathsf{d} = \frac{\sum_{i=2}^{\mathsf{N}} (\frac{\Delta_i}{\sigma_i} - \frac{\Delta_{i-1}}{\sigma_{i-1}})^2}{\sum_{i=1}^{\mathsf{N}} (\frac{\Delta_i}{\sigma_i})^2}$$

(17)

Sector Sector

- Diffraktometer
 - Geometrie und Monochromator (α_1 bzw. $\alpha_{1,2}$)
 - ◇ Instrumenten-Funktion: $g = g_1 * g_2 * g_3 * g_4 * g_5 * g_6$

g1	Profil des Brennflecks
g 2	Abstand der Probenbereiche vom Brennfleck (bei Flachproben)
g3	Axiale Divergenz des Primärstrahls (variierbar durch Soller- Blenden)
g4	Probentransparenz (Absorption)
g 5	Detektor Schlitzblende
g 6	Justagefehler

Experimentelles II

- Probenpräparation
 - statistische Kristallitverteilung (keine Vorzugsorientierung)
 - \diamond unimodale Kristallitgrößenverteilung (ca. 1 bis 10 μ m)
 - Kapillaren: 'passend' zum Strahldurchmesser
- Messung
 - \diamond Schrittweite: ca. $\frac{1}{5}$ bis $\frac{1}{2}$ der minimalen Halbwertsbreite eines gut aufgelösten Reflexes
 - maximale Intensität ca. 10 000 Counts
 - Probenrotation

4 Programme

- GSAS (Generalized Structure Analysis System)
 - 1981
 - Autoren: A. C. Larson und R. B. van Dreele (Los Alamos)
 - keine Quellen, aber Binaries f
 ür viele Plattformen inkl. PC
 - ◇ Neutronen, TOF usw.
 - div. Restraints (z.B. f
 ür Proteine usw.)
 - komfortables graphisches Frontend (bltwish) von B. Toby
 - brauchbare Dokumentation
- XRS-82 (X-ray Rietveld System)
 - 1981 (baut auf X-RAY 72 (Stewart) auf)
 - Autor: Ch. Baerlocher, Zürich
 - Fortran-Quellen verfügbar
 - gute Contraints/Restraints-Möglichkeit (auch Winkel, z.B. Zeolithe)
 - Learned-Profile-Funktion
- DBWS + DBWSTOOL
 - 1981
 - Autoren: D. B. Wiles, A. Sakthivel und R. A. Young (Atlanta)
 - Quellen und Wintel-Versionen
- BGMN
 - Autor: J. Bergmann (Freiberg)
 - GPL (www.bgmn.de)

Programme (Forts.)

- FullProf + WinPlotr-Interface
 - Autor: J. Rodriguez-Carvajal

• RIETAN

- Autor: F. Izumi (Japan)
- in Japan sehr weit verbreitet
- optimierte auswählbare L.S.-Verfahren
- graphische Oberfläche
- simultane Verfeinerung von Röntgen- und Neutronen-Daten
- JANA2000/2006
 - Autoren: V. Petříček, M. Dušek, L. Palatinus
 - auch f
 ür modulierte Strukturen
- SIMREF/SIMPRO
 - Autor: J. Ihringer, H. Ritter (Tübingen)
 - auch f
 ür modulierte Strukturen
- TOPAS
 - kommerziell, Fa. Bruker
- SiroQuant, Quasar
 - ◊ kommerziell
 - vor allem f
 ür quantitative Phasenanalysen
- CCP14-Info-Seite

• Verfeinerungsstrategie

Reihenfolge der Freigabe der einzelnen Parameter

- 1. Gesamtskalierungsfaktor
- 2. einige Untergrundparameter
- 3. Gitterkonstanten
- 4. weitere Untergrundparameter
- 5. wenige Profilparameter (z.B. W)
- 6. Lageparameter der Atome
- 7. Temperaturfaktoren
- 8. weitere Profilparameter (z.B. U, V)
- 9. ev. Nullpunkt

Grafische Hinweise auf Parameterfehler

6 Beispiel

- Messung: Diffraktometer Stoe Stadi-P, Mo k $_{\alpha 1}$ -Strahlung, Ge-Monochromator, DS-Geometrie, Kapillare 0.3 mm
- Meßzeit: 20 h in 6 Ranges
- Meßbereich: 5-50 ° 2θ
- Struktur: RbZn₁₃ (NaZn₁₃-Typ)
 - kubisch, Raumgruppe Fm3c
 - ◇ a=12.45 Å
 - Rb: 1/4,1/4,1/4; Zn1: 0,0,0: Zn2: 0.11, 0.32, 0
- Programm: GSAS/expgui

Grenzen der Methode

Hauptproblem: Korrelationen bei schlechtem Verhältnis Beobachtungen i/Parametern N, z.B. durch

- große Elementarzellen
- niedrige Symmetrie → viele Strukturparameter
- komplexe Profile
- ungewöhnlicher Untergrund (nichtkristalline Probenanteile, usw.)
- starke Reflexüberlappungen

Zusammenfassung

- Strukturverfeinerung aus Pulverdaten, i.a. keine Strukturbestimmung
- Prinzip: LS-Verfeinerung div. Struktur-, Untergrund- und Profil- Parameter
- Diffraktometer/Messung unproblematisch
- Programme: f
 ür verschiedene Probleme/Plattformen jeweils verschiedene freie und bedienerfreundliche Programme zur Auswahl
- Vorteile:
 - kein Einkristall erforderlich
 - einfache T,P-abhängige Strukturanalyse
 - über Profilfunktionen weitere Analysemöglichkeiten
 - auch mehrphasige Proben
- Nachteile:
 - i.a. keine Strukturbestimmung möglich
 - Probleme mit Korrelationen
 - Grenzen: sehr großen Zellen bzw. stark überlappende Reflexe

Literatur

- H. M. Rietveld, Acta Crystallogr. 22, 151 (1967).
- H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
- R. A. Young (Ed.) The Rietveld Method, Oxford University Press (1996).
- C. Giacovazzo (Ed.) Fundamentals of Crystallography, Oxford University Press (2002).
- A. C. Larson, R. B. Von Dreele: GSAS (Handbuch und Tutorial) Los Alamos National Laboratory (1985-2000).
- Schneider/Dinnebier: Kursunterlagen DGK-Workshops Pulverdiffraktometrie (1994, 2003).
- http://ruby/Vorlesung/Seminare/rietveld_2008.pdf