10. Einkristallstrukturbestimmung

'Grundlagen der Röntgenbeugung', SS 24, Caroline Röhr

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration LORENTZ-Korrektur Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

1 Datensammlung
Diffraktometer
Typische Images
Indizierung
Meßstrategien und -parameter
2 Datenreduktion
Erfassung integraler Intensitäten
LORENTZ-Korrektur
Polarisations-Korrektur
Absorptionskorrektur
3 Symmetrie im realen/reziproken Raum
Nicht-I-gewichtetes reziprokes Gitter
FRIEDEL'sches Gesetz
LAUE-Klassen, absolute Strukturen
Systematische Auslöschungen
4 Etwas Mathematik
5 Strukturlösung
PATTERSON-Methode
Direkte Methoden
Charge-Flipping
6 Strukturverfeinerung
7 Ergebnisse
8 Literatur, Programme, Datenbanken

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration LORENTZ-Korrektur Polarisations-K.
- Absorptions-K.

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen
- Etwas Mathe
- Strukturlösung PATTERSON-Methode Direkte Methoden
- CF-Methode
- S.-Verfeinerung
- Ergebnisse

1 Datensammlung
Diffraktometer
Typische Images
Indizierung
Meßstrategien und -parameter
2 Datenreduktion
3 Symmetrie im realen/reziproken Rat
④ Etwas Mathematik
5 Strukturlösung
6 Strukturverfeinerung
7 Ergebnisse
Q Literatur Programme Datenbanken

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- ${\rm Absorptions}\text{-}{\rm K}.$

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen
- Etwas Mathe
- Strukturlösung PATTERSON-Methode Direkte Methoden
- CF-Methode
- S.-Verfeinerung
- Ergebnisse

Beispiel I: Rigaku Spider

- ▶ Dreiachsen-Goniometer (ϕ , χ , ω)
- ▶ gebogene θ und *d*-feste Image-Plate

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

Integration LORENTZ-Korrektur Polarisations-K. Absorptions-K.

- Reziprokes Gitter FREDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode S.-Verfeinerung
- Ergebnisse

Beispiel II: Bruker APEX Quasar CCD

- ► Zweiachsen-Goniometer (ϕ , ω , $\chi = 54.7^{\circ}$)
- ▶ in θ beweglicher CCD-Detektor

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen
- Etwas Mathe
- Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode
- S.-Verfeinerung
- Ergebnisse

Beispiel III: Bruker Venture mit Photon-HL-Detektor

- ► Zweiachsen-Goniometer (ϕ , ω , $\chi = 54.7^{\circ}$)
- $\blacktriangleright\,$ in θ be weglicher Halbleiter-Detektor
- ▶ 2 Incoatec Micro-Source Quellen (Cu/Mo-Strahlung)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

Beispiel IV: Stoe-IPDS-II

▶ Zweiachsen-Goniomter (ϕ , ω , χ =54.7°)

 \blacktriangleright ebene, $\theta\text{-feste Image-Plate}$

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

Integration LORENTZ-Korrektur Polarisations-K. Absorptions-K.

Symmetrie

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung PHTERSN-Methode
- Direkte Methoden CF-Methode

S.-Verfeinerung

Beispiel I: Rigaku-Spider

	CrystalClear-SM1.4.0 rat [Sample	S8-93, Instrument: R-AXIS SPIDER]	
	Task Screen Colort and Process		
	Inter Property and the second second		
	Sample: SB-93	Collection Image Display - C\DATA\AKK\safak\58-93\Images\58-930033.osc	
Mensoes	Within Induced D		Land and and a set of the set of

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden

CF-Methode

S.-Verfeinerung

Beispiel III: Bruker Venture

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

Images, Beispiel IV: Stoe IPDS-II

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

Indizierung

- ▶ Reflexsuche (Peak-Search/Picking/Hunting) oberhalb einer σ -Schranke
- ▶ Indizierung: Zuordnung zu einem Gitter (primitiv \mapsto BRAVAIS)
- Strategien:
 - Suche nach kurzen/häufigen Vektoren zwischen Reflexen (DIFFERENCE VECTORS)

2) graphische Indizierung: Projektionen der Differenzvektoren

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

Indizierung: Strategien (Stoe IPDS-II)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung PATTERSON-Methode

Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

- $\blacktriangleright \, \mapsto$ wiederkehrende Richtungen liegen auf Linien
- Auswahl 3er linear unabhängiger Geraden (Richtungsanalyse)
- \blacktriangleright \mapsto primitive Elementarzelle

Ergebnis der Indizierung (Bsp: Sr-In-Verbindung)

08-Nov-2015 14:14 ------ Peak search ------Selected runs/frames (available: 0 runs, 103 frames) : Run 1 Frames 1,103 Min, max I/Sigma : 10.0, 0.0 Grid : 6 N-Skip : 0 Min. max 2Theta : 3.0, 60.0 New peaklist : Yes 3250 Peaks found, deleted 390, independent 1843 08-Nov-2015 14.14 ------ Index results ------Number of peaks used/selected = 1843 out of 1843 174.6 Initial cell : 9.483 5.004 9.472 74.61 30.61 58.08 Final cell: 5.005 89.97 174.8 5.014 8.038 90.05 119.91 Lattice type : Trigonal P Indexed peaks: 1649 (89.5 %) -0.039489 0.087210 Orienting matrix : 0.118543 -0.116869 0.037989 0.088717 -0.158841 -0.223891 -0.000327

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

- Wellenlänge
 - Absorptionsprobleme (bei weicher = langwelligerer Strahlung kritischer)
 - ▶ Grenzkugel: λ groß \mapsto θ klein \mapsto Auflösung klein
- Meßzeit = f(Proportionalitätsbereiche der Zählertypen, Warteschlange)
- ► Auflösung (RESOLUTION) (in d oder θ)
- Redundanz (REDUNDANCY) = f(LAUE-Klasse, Absorptionsprobleme, Warteschlange)
- Vollständigkeit der Daten (COMPLETEDNESS)
- ▶ Scan-Arten (bei festen Platten nur ω)
- Scanbreiten

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung Patterson-Methode

Direkte Methoden

CF-Methode

S.-Verfeinerung

- Wellenlänge
 - Absorptionsprobleme (bei weicher = langwelligerer Strahlung kritischer)
 - ▶ Grenzkugel: λ groß \mapsto θ klein \mapsto Auflösung klein
- Meßzeit = f(Proportionalitätsbereiche der Zählertypen, Warteschlange)
- ▶ Auflösung (RESOLUTION) (in d oder θ)
- Redundanz (REDUNDANCY) = f(LAUE-Klasse, Absorptionsprobleme, Warteschlange)
- Vollständigkeit der Daten (COMPLETEDNESS)
- ▶ Scan-Arten (bei festen Platten nur ω)
- Scanbreiten

- **()** Narrow-Scan ($< 1^{\circ}$): Reflexe auf mehreren Images
 - ▶ mehr Images \mapsto bei schnellen CCDs bevorzugt
 - bei Integration angepaßte Reflexprofile
 - genauere Reflexpositionen (Gitterparameter)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

- Wellenlänge
 - Absorptionsprobleme (bei weicher = langwelligerer Strahlung kritischer)
 - Grenzkugel: λ groß $\mapsto \theta$ klein \mapsto Auflösung klein
- Meßzeit = f(Proportionalitätsbereiche der Zählertypen, Warteschlange)
- ► Auflösung (RESOLUTION) (in d oder θ)
- Redundanz (REDUNDANCY) = f(LAUE-Klasse, Absorptionsprobleme, Warteschlange)
- Vollständigkeit der Daten (COMPLETEDNESS)
- ▶ Scan-Arten (bei festen Platten nur ω)
- Scanbreiten

- **()** Narrow-Scan (< 1°): Reflexe auf mehreren Images
 - ▶ mehr Images \mapsto bei schnellen CCDs bevorzugt
 - bei Integration angepaßte Reflexprofile
 - genauere Reflexpositionen (Gitterparameter)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung Patterson-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

- Wellenlänge
 - Absorptionsprobleme (bei weicher = langwelligerer Strahlung kritischer)
 - ▶ Grenzkugel: λ groß \mapsto θ klein \mapsto Auflösung klein
- Meßzeit = f(Proportionalitätsbereiche der Zählertypen, Warteschlange)
- ► Auflösung (RESOLUTION) (in d oder θ)
- Redundanz (REDUNDANCY) = f(LAUE-Klasse, Absorptionsprobleme, Warteschlange)
- Vollständigkeit der Daten (COMPLETEDNESS)
- Scan-Arten (bei festen Platten nur ω)
- Scanbreiten

- **()** Narrow-Scan ($< 1^{\circ}$): Reflexe auf mehreren Images
 - ▶ mehr Images \mapsto bei schnellen CCDs bevorzugt
 - bei Integration angepaßte Reflexprofile
 - genauere Reflexpositionen (Gitterparameter)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\rm Absorptions}\text{-}{\rm K}.$

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

- Wellenlänge
 - Absorptionsprobleme (bei weicher = langwelligerer Strahlung kritischer)
 - Grenzkugel: λ groß $\mapsto \theta$ klein \mapsto Auflösung klein
- Meßzeit = f(Proportionalitätsbereiche der Zählertypen, Warteschlange)
- ► Auflösung (RESOLUTION) (in d oder θ)
- Redundanz (REDUNDANCY) = f(LAUE-Klasse, Absorptionsprobleme, Warteschlange)
- Vollständigkeit der Daten (COMPLETEDNESS)
- ▶ Scan-Arten (bei festen Platten nur ω)
- Scanbreiten

- **()** Narrow-Scan (< 1°): Reflexe auf mehreren Images
 - ▶ mehr Images \mapsto bei schnellen CCDs bevorzugt
 - bei Integration angepaßte Reflexprofile
 - genauere Reflexpositionen (Gitterparameter)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung Patterson-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

- Wellenlänge
 - Absorptionsprobleme (bei weicher = langwelligerer Strahlung kritischer)
 - ▶ Grenzkugel: λ groß \mapsto θ klein \mapsto Auflösung klein
- Meßzeit = f(Proportionalitätsbereiche der Zählertypen, Warteschlange)
- ► Auflösung (RESOLUTION) (in d oder θ)
- Redundanz (REDUNDANCY) = f(LAUE-Klasse, Absorptionsprobleme, Warteschlange)
- Vollständigkeit der Daten (COMPLETEDNESS)
- ▶ Scan-Arten (bei festen Platten nur ω)
- Scanbreiten

- **()** Narrow-Scan ($< 1^{\circ}$): Reflexe auf mehreren Images
 - ▶ mehr Images \mapsto bei schnellen CCDs bevorzugt
 - bei Integration angepaßte Reflexprofile
 - genauere Reflexpositionen (Gitterparameter)
- @ Wide-Scan (> 1°): Reflexe vollständig auf einem Image
 - ▶ weniger Bilder nötig \mapsto bei Image Plates bevorzugt
 - Integration durch Detektor
 - ungenauere Reflexpositionen (Gitterparameter)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

0	
2	Datenreduktion
	Erfassung integraler Intensitäten
	LORENTZ-Korrektur
	Polarisations-Korrektur
	Absorptionskorrektur
6	
4	

5 Strukturlösung

- PATTERSON-Methode
- Direkte Methoden
- Charge-Flipping

6 Strukturverfeinerung

- 7 Ergebnisse
- 8 Literatur, Programme, Datenbanken

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\rm Absorptions}\text{-}{\rm K}.$

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

 ${\it Auslöschungen}$

Etwas Mathe

Strukturlösung PATTERSON-Methode

Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

1 Datensammlung
2 Datenreduktion
Erfassung integraler Intensitäten
3 Symmetrie im realen/reziproken Raum
4 Etwas Mathematik
5 Strukturlösung
6 Strukturverfeinerung
7 Ergebnisse

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\rm Absorptions}\text{-}{\rm K}.$

$\mathbf{Symmetrie}$

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung Patterson-Methode

Direkte Methoden

CF-Methode

S.-Verfeinerung

Erfassung integraler Intensitäten

 Integration aller Reflexe auf allen Images (Integrationsellipsoide, Profile, ...)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\rm Absorptions}\text{-}{\rm K}.$

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

 ${\it Auslöschungen}$

Etwas Mathe

Strukturlösung PATTERSON-Methode

Direkte Methoden CF-Methode

S.-Verfeinerung

 $\mathbf{Ergebnisse}$

Datenreduktion

Korrektur der Daten auf:

- Meßzeit pro Platte
- \blacktriangleright LORENTZ-Faktor (L)
- $\blacktriangleright Polarisations-Faktor (p)$
- Absorption (A)
- nach:

$$F_{hkl}^2 = I_{hkl} = \frac{I_{hkl}^{\text{roh}}}{LpA}$$

▶ vgl. mit Pulver-Daten:

$$F_{hkl}^2 = I_{hkl} = \frac{I_{hkl}^{\rm roh}}{LpAH_{hkl}}$$

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz

LAUE-Klassen

 ${\it Auslöschungen}$

Etwas Mathe

Strukturlösung Patterson-Methode

Direkte Methoden

CF-Methode

S.-Verfeinerung

 $\mathbf{Ergebnisse}$

1 Datensammlung
2 Datenreduktion
Erfassung integraler Intensitäten
LORENTZ-Korrektur
3 Symmetrie im realen/reziproken Rau
4 Etwas Mathematik
5 Strukturlösung
6 Strukturverfeinerung
7 Ergebnisse

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\rm Absorptions}\text{-}{\rm K}.$

$\mathbf{Symmetrie}$

Reziprokes Gitter FRIEDEL'sches Gesetz

LAUE-Klassen

 ${\it Auslöschungen}$

Etwas Mathe

Strukturlösung Patterson-Methode

Direkte Methoden

CF-Methode

S.-Verfeinerung

LORENTZ-Korrektur

- ▶ Korrektur auf Verweilzeit der Reflexe in 'Reflexions'stellung
- \blacktriangleright Korrekturfaktor L proportional zur Zeit, die Reflex in Beugungsposition ist
- \blacktriangleright einfachster Fall: Äquator-Reflexe; Drehung des Kristalls/rezi
proken Gitters mit konstanter Winkelgeschwindigkeit ω

▶ Aufenthaltszeit des Reflexes (bei $\omega = \text{konst.}$) kürzer, wenn ...

- ... der reziproke Gittervektor lang ist*
- ... der Winkel zwischen EWALD-Kugel-Tangente und der Tangente am Kristall-Drehkreis stumpf ist

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\rm Absorptions}\text{-}{\rm K}.$

$\mathbf{Symmetrie}$

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

Ergebnisse

*: bis $2\theta = 90^{\circ}$

LORENTZ-Korrektur (Forts.)

 \blacktriangleright Lineargeschwindigkeit v des Reflexes:

 $v=\omega |\vec{r}^{**}|$

• Komponente $v_n \perp$ zur Tangente an die EWALD-Kugel:

$$v_n = \omega |\bar{r}^*| \cos \theta$$

mit BRAGG'scher Gleichung $|\vec{r}^*| = \frac{1}{d} = \frac{2 \sin \theta}{\lambda}$ folgt:

$$v_n = \underbrace{\omega \frac{2}{\lambda}}_{\text{const.}} \underbrace{\sin \theta \cos \theta}_{\text{Korrekturfaktor}}$$

der LORENTZ-Faktor L (1/Korrekturfaktor) ist damit:

 1
 1

$$L = \frac{1}{\sin\theta\cos\theta} = \frac{1}{\sin 2\theta}$$

▶ Konsequenz:

- L für verschiedene Experimente/Geräte/Scan-Arten ... kompliziert, aber jeweils bekannt und berechenbar
- Werte für $L: +\infty$ $(\theta = 0^\circ) \dots 1$ $(\theta = 45^\circ) \dots +\infty$ $(\theta = 90^\circ)$

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

Symmetrie

- Resiprokes Gitter FREDEL'sches Gesetz Luus-Klassen Auslöschungen Etwas Mathe Strukturlösung PATTERSON-Methode Direkte Methoden
- $\operatorname{CF-Methode}$

S.-Verfeinerung

1 Datensammlung
2 Datenreduktion
Polarisations-Korrektur
3 Symmetrie im realen/reziproken Raum
4 Etwas Mathematik
5 Strukturlösung
6 Strukturverfeinerung
7 Ergebnisse

8 Literatur, Programme, Datenbanken

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\rm Absorptions}\text{-}{\rm K}.$

$\mathbf{Symmetrie}$

Reziprokes Gitter FRIEDEL'sches Gesetz

LAUE-Klassen

 ${\it Auslöschungen}$

Etwas Mathe

Strukturlösung Patterson-Methode

Direkte Methoden

CF-Methode

S.-Verfeinerung

Polarisations-Korrektur

einfachster Fall: zirkular polarisierter Primärstrahl

- ▶ Amplitude der zirkular polarisierten Strahlung 1:1 zerlegbar in A_{\perp} und A_{\parallel}
- ▶ A_{\parallel} : unverändert durch Beugung
- ▶ A_{\perp} : nur Komponente \perp Ausfallsrichtung bleibt erhalten

$$\cos 2\theta = \frac{\text{Ankathete}}{\text{Hypotenuse}} = \frac{A_{\text{aus}}}{A_{\text{ein}}}$$

▶ wegen $I_{\text{aus}} = A_{\text{aus}}^2$ folgt für die senkrechte Komponente:

$$I_{\rm aus} = I_{\rm ein} \cos^2 2\theta$$

• und wegen unverändertem A_{\parallel} insgesamt als Korrekturfaktor:

$$p = \frac{1 + \cos^2 2\theta}{2}$$

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

 ${\it Polarisations-K}.$

 ${\bf Absorptions}\textbf{-}{\bf K}.$

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

Polarisations-Korrektur (Forts.)

- I! bei Verwendung von Kristallmonochromatoren
 - Primärstrahl durch Monochromator bereits teilpolarisiert
 - ▶ \mapsto komplizierte Formeln für p,
 - mit Parametern, die vom Monochromatorkristall (Mosaizität) abhängen.
- Konsequenz der Polarisationskorrektur:
 - Werte für p: 1.0 ($\theta = 0^{\circ}$) ... 0.5 ($\theta = 45^{\circ}$)
- ► Lp-Gesamtkorrektur gesamt (Produkt):

$$Lp = \frac{1 + \cos^2 2\theta}{2\sin 2\theta}$$

Beispiele:
\$\theta = 5^\circ \mapsto Lp = 5.67\$
\$\theta = 20^\circ \mapsto Lp = 1.23\$
\$\theta = 45^\circ \mapsto Lp = 0.5\$

▶ wegen $F_{obs} = \sqrt{\frac{I_{roh}}{LpA}}$ werden Hochwinkelreflexe relativ verstärkt (wichtig z.B. für die Bewertung von Auslöschungsbedingungen)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\bf Absorptions}\textbf{-}{\bf K}.$

Symmetrie

Reziprokes Gitter FREDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

1 Datensammlung
2 Datenreduktion
Absorptionskorrektur
3 Symmetrie im realen/reziproken Ra
4 Etwas Mathematik
5 Strukturlösung

6 Strukturverfeinerung

- 7 Ergebnisse
- 8 Literatur, Programme, Datenbanken

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- ${\bf Absorptions}\textbf{-}{\bf K}.$

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- ${\it Auslöschungen}$
- Etwas Mathe
- Strukturlösung Patterson-Methode
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

Absorptionskorrektur

- Absorption durch elastische (Rayleigh-) und inelastische (Compton-)Streuung, Ionisation
- ▶ Korrektur durch Absorptionsfaktor A nach LAMBERT-BEER:

 $A = e^{-\mu d}$

 \blacktriangleright A hängt ab von

- ▶ Massenschwächungskoeffizienten μ der enthaltenen Elemente $\mapsto A$ steigt ca. mit (Ordnungszahl)⁴
 - $\mapsto A$ steigt ca. mit λ^3 (d.h. Cu:Mo wie ca. 8:1)
- Weglänge d der Strahlung (ein/aus) durch Kristall

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz

LAUE-Klassen

 ${\it Auslöschungen}$

Etwas Mathe

Strukturlösung PATTERSON-Methode

Direkte Methoden

CF-Methode

S.-Verfeinerung

Absorptionskorrektur

- Absorption durch elastische (Rayleigh-) und inelastische (Compton-)Streuung, Ionisation
- ▶ Korrektur durch Absorptionsfaktor A nach LAMBERT-BEER:

 $A = e^{-\mu d}$

A hängt ab von

- ▶ Massenschwächungskoeffizienten μ der enthaltenen Elemente $\mapsto A$ steigt ca. mit (Ordnungszahl)⁴
 - $\mapsto A$ steigt ca. mit λ^3 (d.h. Cu:Mo wie ca. 8:1)
- Weglänge d der Strahlung (ein/aus) durch Kristall

Korrekturen:

- ▶ nur ○-Kristalle verwenden
- numerisch: bei bekannter Kristall-Form/Abmessungen/Orientierung auf dem Diffraktometer

 \mapsto Addition über alle Volumen
inkremente

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

Absorptionskorrektur (Forts.)

• Korrekturen (Forts.):

- empirisch mit Ψ -Scans
 - I einiger ausgewählter Reflexe bei vielen Ψ -Winkeln (z.B. alle 10°) vermessen
 - daraus Absorptionsprofil des Kristalls berechnen
 - (i.A. nur bei Vierkreisdiffraktometern möglich)

- empirisch mit multiscan-Methode:
 - ähnlich Ψ-Scans, aber
 - Redundanz der Daten ermöglicht Anpassung des Absorptionsprofils (nur bei hohen Redundanzen, z.B. Flächenzählerdaten, besonders bei hoher Symmetrie, s.u.)
- Optimierung bestimmter Kristallformen auf Basis der Redundanz (XShape)
- ▶ modellabhängige Korrekturen auf Basis $F_{obs} F_{calc}$ (DIFABS)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FREDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode S.-Verfeinerung

Ergebnis der Messung \mapsto hkl-Datei

z.B. für das unbekannte Beispiel einer binären Sr-In-Legierung

-1	0	0	127.67	7.74	0
-1	1	0	164.69	20.47	0
1	-1	0	150.86	19.70	0
0	1	0	141.06	15.97	0
-1	1	0	128.60	8.67	0
0	-1	0	116.54	15.66	0
1	-1	0	129.20	8.76	0
1	0	0	128.67	9.12	0
1	0	0	130.77	8.47	0
-1	0	0	125.69	9.19	0
1	-2	0	8378.33	19.27	0
-2	1	0	9999.99	17.43	0
-2	1	0	8797.08	16.48	0
2	-1	0	9471.04	19.29	0
2	-1	0	8080.88	14.42	0
-1	2	0	9086.26	29.30	0
1	1	0	8781.39	17.79	0
-1	2	0	7946.62	18.97	0
-1	-1	0	8867.95	18.65	0
2	0	0	117.59	6.31	0
0	2	0	114.25	9.80	0
-2	0	0	116.43	4.99	0

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

1 Datensammlung
2 Datenreduktion
Summetrie im realen /reginnelten Poum
 Symmetrie im realen/reziproken Raum Nicht-<i>I</i>-gewichtetes reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen, absolute Strukturen Systematische Auslöschungen
 Symmetrie im realen/reziproken Raum Nicht-I-gewichtetes reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen, absolute Strukturen Systematische Auslöschungen Etwas Mathematik
 Symmetrie im realen/reziproken Raum Nicht-I-gewichtetes reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen, absolute Strukturen Systematische Auslöschungen Etwas Mathematik Strukturlösung PATTERSON-Methode Direkte Methoden Charge-Flipping
 Symmetrie im realen/reziproken Raum Nicht-I-gewichtetes reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen, absolute Strukturen Systematische Auslöschungen Etwas Mathematik Strukturlösung PATTERSON-Methode Direkte Methoden Charge-Flipping Strukturverfeinerung
 Symmetrie im realen/reziproken Raum Nicht-I-gewichtetes reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen, absolute Strukturen Systematische Auslöschungen Etwas Mathematik Strukturlösung PATTERSON-Methode Direkte Methoden Charge-Flipping Strukturverfeinerung Ergebnisse

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- ${\it Polarisations-K}.$
- Absorptions-K.

- Reziprokes Gitter FRIEDEL'sches Gesetz
- L_{AUE} -Klassen
- Auslöschungen
- Etwas Mathe
- Strukturlösung
- PATTERSON-Methode
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

Symmetrie im realen Raum

Punktsymmetrie Translations-S. 10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz

LAUE-Klassen

 ${\it Auslöschungen}$

Etwas Mathe

Strukturlösung

PATTERSON-Methode

Direkte Methoden

CF-Methode

S.-Verfeinerung
1 Datensammlung
2 Datenreduktion
3 Symmetrie im realen/reziproken Raum
Nicht-I-gewichtetes reziprokes Gitter
4 Etwas Mathematik
5 Strukturlösung
6 Strukturverfeinerung
7 Ergebnisse

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\rm Absorptions}\text{-}{\rm K}.$

Symmetrie

Reziprokes Gitter

 ${\tt FRIEDEL'sches} \ {\tt Gesetz}$

LAUE-Klassen

 ${\it Auslöschungen}$

Etwas Mathe

Strukturlösung

PATTERSON-Methode

Direkte Methoden

CF-Methode

S.-Verfeinerung

 $\mathbf{Ergebnisse}$

Symmetrie des reziproken Gitters (ohne I/F)

Das nicht(!)-intensitätsgewichtete reziproke Gitter ist translationssymmetrisch.

- \blacktriangleright Gitter parameter: $a^*,\,b^*,\,c^*,\,\alpha^*,\,\beta^*,\,\gamma^*$
- ▶ ggf. spezielle Metrik (aufgrund von Symmetrie, s.u.)
- ► Zuordnung zu einem der 7 Kristallsysteme (analog Realraum); (Indizierung → primitive reziproke Gittervektoren)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\bf Absorptions}\textbf{-}{\bf K}.$

Symmetrie

Reziprokes Gitter

FRIEDEL'sches Gesetz

LAUE-Klassen

Auslöschungen

Etwas Mathe

 $\operatorname{Strukturlösung}$

PATTERSON-Methode

Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

Symmetrie im realen und reziproken Raum

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

- Reziprokes Gitter
- FRIEDEL'sches Gesetz
- LAUE-Klassen
- ${\it Auslöschungen}$
- Etwas Mathe
- Strukturlösung
- PATTERSON-Methode
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

1 Datensammlung
2 Datenreduktion
3 Symmetrie im realen/reziproken Raum
FRIEDEL'sches Gesetz
4 Etwas Mathematik
5 Strukturlösung
6 Strukturverfeinerung
7 Ergebnisse

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- ${\rm Absorptions}\text{-}{\rm K}.$

- Reziprokes Gitter
- ${\tt FRIEDEL'sches} \ {\tt Gesetz}$
- LAUE-Klassen
- ${\it Auslöschungen}$
- Etwas Mathe
- Strukturlösung
- PATTERSON-Methode
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

Intensitäten (Wdh.)

▶ Im intensitätsgewichteten reziproken Gitter (Beobachtung!) hat jeder Reflex \vec{h} eine Intensität, die sich aus dem Betragsquadrat des Strukturfaktors ergibt:

$$F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \cdot \vec{x_j})} = \sum_{j=1}^{N} f_j [\underbrace{\cos\left(2\pi \vec{h} \cdot \vec{x_j}\right)}_{A_j} + i \underbrace{\sin\left(2\pi \vec{h} \cdot \vec{x_j}\right)}_{B_j}] = \sum_{j=1}^{N} f_j (A_j + iB_j) \underbrace{\operatorname{Indizierung}}_{\operatorname{MeBstrategien}} = \sum_{j=1}^{N} f_j (A_j + iB_j) \underbrace{\operatorname{Indizierung}}_{\operatorname{MBstrategien}} = \sum_{I$$

▶ $\sum_{i=1}^{N}$ am besten in GAUSS'scher Zahlenebene darstellbar (z.B. für 3 Atome):

• messbar nur $I_{\vec{h}} = |F_{\vec{h}}|^2$ (Quadrat der Amplitude, anschaulich: Quadrat der Länge von F)

Einkristallstrukturbestimmung

Datensammlung

Diffraktometer Images

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode

Direkte Methoden CF-Methode

S.-Verfeinerung

FRIEDEL'sches Gesetz

unabhängig von der Symmetrie der Struktur gilt das FRIEDEL'sche Gesetz:

Das intensitätsgewichtete reziproke Gitter ist zentrosymmetrisch. Beweis: Vergleich von $I_{\vec{h}} = |F_{\vec{h}}|^2$ und $I_{-\vec{h}} = |F_{-\vec{h}}|^2$

▶ Strukturfaktor des Reflexes \vec{h} (h, k, l):

$$F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \vec{x_j})} = \sum_{j=1}^{N} f_j [\underbrace{\cos\left(2\pi \vec{h} \vec{x_j}\right)}_{A_j} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j}] = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{\text{Absorptions-Kappendic}} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_j)^{\text{Integration}} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j} = \sum_{j=1}^{N} f_j (A_j + iB_$$

▶ und des 'Gegen'-Reflexes $-\vec{h}$ $(\bar{h}, \bar{k}, \bar{l})$:

$$F_{-\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (-\vec{h}\vec{x_j})} = \sum_{j=1}^{N} f_j [\cos\left(-2\pi \vec{h}\vec{x_j}\right) + i\sin\left(-2\pi \vec{h}\vec{x_j}\right)]$$

wegen $\cos \phi = \cos (-\phi)$ (Spiegelsymmetrie) und $\sin (-\phi) = -\sin \phi$ (Inversions- symmetrie) folgt:

$$F_{-\vec{h}} = \sum_{j=1}^{N} f_j [\underbrace{\cos(2\pi \vec{h} \vec{x_j})}_{A_j} - i \underbrace{\sin(2\pi \vec{h} \vec{x_j})}_{B_j}] = \sum_{j=1}^{N} f_j (A_j - iB_j)$$

Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer Images
- Indizierung Meßstrategien

JAQUES FRIEDEL

Datenreduktion

tur

Symmetrie

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung
- PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

FRIEDEL'sches Gesetz: Erklärung in der GAUSS'schen Zahlenebene

- Die Strukturfaktoren von *h F_n* = ∑_{j=1}^N *f_j*(*A_j* + *iB_j*) = ∑_{j=1}^N *f_jA_j* + *i*∑_{j=1}^N *f_jB_j*
 und -*h F_{-n}* = ∑_{i=1}^N *f_i*(*A_i* - *iB_i*) = ∑_{i=1}^N *f_jA_i* - *i*∑_{i=1}^N *f_jB_j*
- unterscheiden sich nur im <u>Vorzeichen des Phasenwinkels</u>.
- ▶ gemessen wird $I = |F|^2$, das Quadrat der Länge von F in der komplexen Zahlenebene:

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- ${\bf Absorptions}\textbf{-}{\bf K}.$

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen
- Etwas Mathe
- Strukturlösung PATTERSON-Methode
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

FRIEDEL'sches Gesetz: Erklärung für Mathematik-Freunde

 \blacktriangleright Die Strukturfaktoren von \vec{h}

$$F_{\vec{h}} = \sum_{j=1}^{N} f_j (A_j + iB_j) = \underbrace{\sum_{j=1}^{N} f_j A_j}_{\alpha} + i \underbrace{\sum_{j=1}^{N} f_j B_j}_{\beta} = \alpha + i\beta$$

▶ und $\vec{-h}$

$$F_{-\vec{h}} = \sum_{j=1}^{N} f_j (A_j - iB_j) = \underbrace{\sum_{j=1}^{N} f_j A_j}_{\alpha} - i \underbrace{\sum_{j=1}^{N} f_j B_j}_{\beta} = \alpha - i\beta$$

 sind konjugiert komplex (Unterschied nur im Vorzeichen des Imaginärteils).

▶ Für den Betrag einer komplexen Zahl gilt (Bronstein, S. 559)

 $|a| = \sqrt{a\bar{a}} = \sqrt{\alpha^2 + \beta^2}$

► Daraus folgt für die komplexen Zahlen F: $|F_{\vec{h}}| = |F_{-\vec{h}}| = \sqrt{\alpha^2 + \beta^2}$ und $|F_{\vec{h}}|^2 = |F_{-\vec{h}}|^2 = \alpha^2 + \beta^2$ (Pythagoras)

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- ${\bf Absorptions}\textbf{-}{\bf K}.$

Symmetrie

Reziprokes Gitter FREDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode S.-Verfeinerung

1 Datensammlung
2 Datenreduktion
3 Symmetrie im realen/reziproken Raum
LAUE-Klassen, absolute Strukturen
4 Etwas Mathematik
5 Strukturlösung
6 Strukturverfeinerung
7 Ergebnisse

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- ${\rm Absorptions}\text{-}{\rm K}.$

- Reziprokes Gitter
- FRIEDEL'sches Gesetz
- L_{AUE} -Klassen
- ${\it Auslöschungen}$
- Etwas Mathe
- Strukturlösung
- ${\rm Patterson-Methode}$
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

LAUE-Klassen

10. Einkristallstrukturbestimmung

Datensammlung

MAX VON LAUE (inkl. Experiment)

			Diffraktometer
Kristallsystem	Kristallklasse	LAUE-Gruppe	Images
triklin	1, 1	Indizierung	
monoklin	2, m, 2/m	2/m	Meßstrategien
orthorhombisch	$222,\ mm2,\ mmm$	mmm	Datenreduktion
tetragonal	$4, \bar{4}, 4/m$	4/m (niedrig)	Integration
	$422, \bar{4}2m, 4mm, 4/mmm$	4/mmm (hoch)	LORENTZ-Korrektur
trigonal	3, 3	$\bar{3}$ (niedrig)	Absorptions-K.
	$321, 3m1, \bar{3}m1$	$\bar{3}m1$ (hoch)	Symmetrie
	$311, 31m, \bar{3}1m$	$\bar{3}1m$ (hoch)	Reziprokes Gitter
hexagonal	$6, \bar{6}, 6/m$	6/m (niedrig)	FRIEDEL'sches Geset
	$622, \bar{6}2m, 6mm, 6/mmm$	6/mmm (hoch)	Laue-Klassen
kubisch	$23, m\bar{3}$	$m\bar{3}$ (niedrig)	Auslöschungen
	432, $\overline{4}3m$, $m\overline{3}m$	$m\bar{3}m$ (hoch)	Etwas Mathe

olarisations-K. bsorptions-K. vmmetrie eziprokes Gitter RIEDEL'sches Gesetz AUE-Klassen uslöschungen was Mathe Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode S.-Verfeinerung

LAUE-Klassen

- \blacktriangleright Punkt
symmetrie des/im Kristall \mapsto Punkt
symmetrie im reziproken Raum
- ▶ wegen FRIEDEL'schem Gesetz \mapsto 11 (LAUE-Klassen) statt 32 (Kristallklassen) Punktgruppen
- \blacktriangleright analog Realraum \mapsto asymmetrische Einheit \mapsto enthält bereits sämtliche I-Informationen

Beispiele f ür 'assymmetrische' Einheiten:

- ▶ triklin: $\frac{1}{2}$ Kugel (1)
- monoklin: $\frac{1}{4}$ (2/m)
- orthorhombisch: $\frac{1}{8}$ (ein Oktant, mmm)
- ..
- kubisch, hohe LAUE-Klasse: $\frac{1}{48}$

▶ Test auf Laue-Klasse (MERGE EQUIVALENTS)

$$R_{\rm int} = \frac{\Sigma |F_{\rm obs}^2 - F_{\rm obs}^2(\text{gemittelt})|}{\Sigma F_{\rm obs}^2}$$

▶ für die Datensammlung: Redundanz (REDUNDANCY)

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

Symmetrie

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- ${\it Auslöschungen}$
- Etwas Mathe
- Strukturlösung
- ${\it Patterson-Methode}$
- Direkte Methoden
- $\operatorname{CF-Methode}$

S.-Verfeinerung

Symmetrie im realen und reziproken Raum

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

- Reziprokes Gitter
- LAUE-Klassen
- ${\it Auslöschungen}$
- Etwas Mathe
- Strukturlösung
- PATTERSON-Methode
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

Zentrosymmetrische Strukturen

10. Einkristallstrukturbestimmung

Resonante Streuung (Anomale Dispersion)

- \blacktriangleright wenn λ energetisch etwas oberhalb einer Absorptionskante eines Elementes der Struktur
- $\blacktriangleright \mapsto$ Röntgenstrahlen bewirken Ionisation dieses Elementes
- ► \mapsto zusätzliche Anteile zum Atomformfaktor f_o : $f_o^{\text{anom.}} = f_o + \Delta f' + i\Delta f''$
 - ▶ Realteil $\Delta f'$: \oplus oder meist \ominus
 - ▶ Imaginärteil: $\Delta f''$: immer ⊕
- $\blacktriangleright \Delta f$ weitgehend unabhängig von $\sin \theta,$ da innere Elektronen beteiligt
- $\blacktriangleright \mapsto$ besonders Hochwinkelreflexe betroffen

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- ${\bf Absorptions}\textbf{-}{\bf K}.$

- Reziprokes Gitter FRIEDEL'sches Gesetz
- Laue-Klassen
- ${\it Auslöschungen}$
- Etwas Mathe
- Strukturlösung PATTERSON-Methode
- Direkte Methoden
- CF-Methode
- S.-Verfeinerung
- Ergebnisse

Resonante Streuung (Anomale Dispersion) (Forts.)

Auswirkungen:

- zentrosymmetrische Strukturen:
 - Phasen Φ weichen von 0 bzw. π ab
 - FRIEDEL'sches Gesetz gilt weiterhin
- azentrische Strukturen:
 - Abweichung vom FRIEDEL'schen Gesetz
- ► → ab 3. Periode (S, Cl) bereits zuverlässige Aussagen zur absoluten Struktur möglich (FLACK-Parameter)

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images

I : alle 'Leichtatome'

- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- Polarisations-K.
- Absorptions-K.

$\mathbf{Symmetrie}$

- Reziprokes Gitter FREDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung PATERSN-Methode Direkte Methode
- S.-Verfeinerung
- Ergebnisse

1 Datensammlung
2 Datenreduktion
3 Symmetrie im realen/reziproken Raum
Systematische Auslöschungen
4 Etwas Mathematik
5 Strukturlösung
6 Strukturverfeinerung
7 Ergebnisse
O Litopotun Programma Datanhankan

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- ${\rm Absorptions}\text{-}{\rm K}.$

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- Auslöschungen
- Etwas Mathe
- Strukturlösung
- PATTERSON-Methode
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

Auslöschungsbedingungen I

▶ Gesamtzentrierung der Gitter:

$\blacktriangleright \ \mapsto \ integrale$ Auslöschungsbedingungen

Symbol	Ζ	zusätzliche	Bedingung für das
		Atompositionen	Auftreten von Reflexen
Р	primitiv	-	-
Ι	2-fach primitiv	$x + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$	h+k+l=2n
C	2-fach primitiv	$x+\tfrac{1}{2},y+\tfrac{1}{2},z$	h+k=2n
F	4-fach primitiv	$x+\tfrac{1}{2},y+\tfrac{1}{2},z$	h+k=2n
		$x+rac{1}{2},y,z+rac{1}{2}$	h+l=2n
		$x, y + \frac{1}{2}, z + \frac{1}{2}$	k+l=2n
R	3-fach primitiv	$x + \frac{1}{3}, y + \frac{2}{3}, z + \frac{2}{3}$	-h+k+l = 3n
		$x + \frac{2}{3}, y + \frac{1}{3}, z + \frac{1}{3}$	

- Beweis: Einsetzen in Strukturfaktoren (s.u.)
- ▶ 'BRAVAIS'-Gitter auch im reziproken Raum \downarrow

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

- Reziprokes Gitter FRIEDEL'sches Gesetz
- LAUE-Klassen
- Auslöschungen
- Etwas Mathe
- Strukturlösung PATTERSON-Methode Direkte Methoden
- CF-Methode
- S.-Verfeinerung
- Ergebnisse

Auslöschungsbedingungen I: Integrale Auslöschungen

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung Patterson-Methode

Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

Symmetrie im realen und reziproken Raum

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration LORENTZ-Korrektur Polarisations-K.
- Absorptions-K.

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- ${\it Auslöschungen}$
- Etwas Mathe
- Strukturlösung PATTERSON-Methode
- CF-Methode
- S.-Verfeinerung
- Ergebnisse

Auslöschungsbedingungen II: Zonale und serielle Auslöschungen

▶ alle weiteren Symmetrieelemente mit Translationskomponenten, d.h.

Schraubenachsen $(n_m, z.B. 2_1, 3_1 usw.)$

- erzeugen weitere Auslöschungen:
 - zonale Auslöschungsbedingungen für Gleitspiegelebenen, z.B. für Äquator-Reflexe 0kl:

•
$$k + l = 2n \mapsto n \perp \vec{a}$$

•
$$k = 2n \mapsto b \perp \vec{a}$$

•
$$l = 2n \mapsto c \perp \vec{a}$$

 serielle Auslöschungsbedingungen für Schraubenachsen, z.B. für Achs-Reflexe 00*l*:

• $l = 2n \mapsto 2_1$ bzw. 4_2 bzw. $6_3 \parallel \vec{c}$ • $l = 3n \mapsto 3_1$ bzw. $6_2 \parallel \vec{c}$ • $l = 4n \mapsto 4_1 \parallel \vec{c}$ • $l = 6n \mapsto 6_1 \parallel \vec{c}$

vollständige Liste s. I.T.; rechte Spalte bei jeder Raumgruppe

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\bf Absorptions}\textbf{-}{\bf K}.$

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz

LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode

'AlTERSON-Methode

Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

Serielle Auslöschungen: Beispiel Gleitspiegelebene c $\perp \vec{b}$

• c
$$\perp \vec{b}: x, y, z \leftrightarrow x, -y, z + \frac{1}{2}$$

der Strukturfaktor kann damit unterteilt werden:

$$F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \vec{x_j})} = \sum_{j=1}^{N/2} f_j [e^{2\pi i (hx+ky+lz)} + e^{2\pi i \{hx-ky+l(z+\frac{1}{2})\}}]$$

Für k = 0 (h0l-Reflexe) läßt sich vereinfachen:

$$F_{h0l} = \sum_{j=1}^{N/2} f_j[(e^{2\pi i hx} e^{2\pi i lz})(1 + \underbrace{e^{\pi i l}}_{-1?})]$$

•
$$F_{h0l}$$
 wird 0, wenn $e^{\pi i l} = -1$ ist.

• Wegen $e^{\pi i l} = \cos \pi l + i \sin \pi l$

 \blacktriangleright ist dies für ungeradzahlige l erfüllt, da

$$\cos l\pi = -1$$
$$\sin l\pi = 0$$

• und damit
$$e^{\pi i l} = -1$$
 und $F_{h0l} = 0$.

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode

Direkte Methoden

CF-Methode

S.-Verfeinerung

Auslöschungsbedingungen: Eintrag in den I.T.

Einkristallstruk-Cmcaturbestimmung D_{2h}^{18} Orthorhombic $C 2/m 2/c 2_1/a$ No. 64 mmmDatensammlung Diffraktometer Θ^{1}_{2} 1-Images -Ò - -Ò -Indizierung $\frac{1}{2} + 0$ - 🗿 Meßstrategien - -ò - -Datenreduktion •+ - 🛈 - 0 Integration LORENTZ-Korrektur Origin at centre (2/m) Number of positions, Co-ordinates of equivalent positions Conditions limiting Polarisations-K. Wyckoff notation, possible reflections Absorptions-K. and point symmetry $\begin{array}{c} & (0,0,0;\; \frac{1}{2}, \frac{1}{2}, 0) + \\ 1\; x, \, y, \, z;\; x, \, \bar{y}, \, \bar{z};\; x, \, \frac{1}{2} - y, \, \frac{1}{2} + z;\; x, \, \frac{1}{2} + y, \, \frac{1}{2} - z;\; hkl:\; h + k = 2n \\ \bar{x}, \, \bar{y}, \, \bar{z};\; \bar{x}, \, y, \, z;\; \bar{x}, \, \frac{1}{2} + y, \, \frac{1}{2} - z;\; \bar{x}, \, \frac{1}{2} - y, \, \frac{1}{2} + z.\; 0kl:\; (k = 2n) \end{array}$ Symmetrie $16 \, g$ Reziprokes Gitter FRIEDEL'sches Gesetz h0l: l = 2n: (h = 2n)LAUE-Klassen hk0: h = 2n; (k = 2n)Auslöschungen h00: (h = 2n)0k0: (k = 2n)Etwas Mathe 00l: (l = 2n)Strukturlösung Special: as above, plus PATTERSON-Methode 8 f $m \ 0, y, z; 0, \bar{y}, \bar{z}; \frac{1}{2}, y, \frac{1}{2}$ no extra conditions Direkte Methoden 8 e $2\frac{1}{4}, y, \frac{1}{4}; \frac{3}{4}, \bar{y}, \frac{3}{4}; \frac{3}{4}, \bar{y}, \frac{1}{4}; \frac{1}{4}, \bar{y}, \frac{3}{4}$ hkl: h = 2n; (k = 2n) $2x, 0, 0; \bar{x}, 0, 0, x, \frac{1}{2}, \frac{1}{2}; \bar{x},$ $hkl: k + l = 2n; (l + h = 2n)^{\text{F-Methode}}$ 8 d $\bar{1} \frac{1}{4}, \frac{1}{4}, 0; \frac{1}{4}, \frac{3}{4}, 0;$ hkl: h, l = 2n; (k = 2n)8 c S.-Verfeinerung $2/m \frac{1}{2}, 0, 0; \frac{1}{2},$ 4 h $2/m \ \overline{0}, 0, 0; 0, \frac{1}{2},$ 4 aErgebnisse

10.

Auslöschungsbedingungen: Eintrag in I.T. (Detail v. $C\frac{2}{m}\frac{2}{c}\frac{2_1}{a}$)

	Origin at centre $(2/m)$		
Number of positions	Co-ordinates of equivalent positions	Conditions limiting	Datensammlung
Wyckoff notation	,	possible reflections	Diffraktometer
wyckon notation,		possible reflections	Images
and point symmetry	(a.a.a. 1. 1. a.).		Indizierung
	$(0,0,0; \frac{1}{2}, \frac{1}{2}, 0) +$		indiziel ung
16 g 1	$x, y, z; x, \bar{y}, \bar{z}; x, \frac{1}{2} - y, \frac{1}{2} + z; x, \frac{1}{2} + y, \frac{1}{2} - y$	z; hkl: h+k = 2n	Meßstrategien
	$\bar{x}, \bar{y}, \bar{z}; \bar{x}, y, z; \bar{x}, \frac{1}{2} + y, \frac{1}{2} - z; \bar{x}, \frac{1}{2} - y, \frac{1}{2} +$	z. $0kl: (k = 2n)$	Datenreduktion
		h0l: l = 2n; (h = 2n)	Tutomotion
		hk0: h = 2n; (k = 2n)	Integration
		h00; (h = 2n)	LORENTZ-Korrektur
		0k0: (k - 2n)	Polarisations-K.
		001; (l = 2n)	Absorptions-K.
		001. (l = 2n)	
			Symmetrie
		Special: as above, plus	Reziprokes Gitter
8 f m	$0, y, z; 0, \bar{y}, \bar{z}; \frac{1}{2}, y, \frac{1}{2} - z; \frac{1}{2}, \bar{y}, \frac{1}{2} + z.$	no extra conditions	FRIEDEL'sches Gesetz
8 e 2	$\frac{1}{4}$, y , $\frac{1}{4}$; $\frac{3}{4}$, \bar{y} , $\frac{3}{4}$; $\frac{3}{4}$, y , $\frac{1}{4}$; $\frac{1}{4}$, \bar{y} , $\frac{3}{4}$.	hkl: h = 2n; (k = 2n)	LAUE-Klassen
8 d 2	$x, 0, 0; \bar{x}, 0, 0, x, \frac{1}{2}, \frac{1}{2}; \bar{x}, \frac{1}{2}, \frac{1}{2}.$	hkl: k + l = 2n; (l + h = 2)	(2n)
8 c 1	$\frac{1}{1}, \frac{1}{1}, 0; \frac{1}{2}, \frac{3}{2}, 0; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{2};$	hkl: h, l = 2n: (k = 2n)	Ausioschungen
4 h 2/m	$\frac{4}{1}$ $\frac{4}{0}$ $\frac{4}{1}$ $\frac{4}{1}$ $\frac{4}{4}$ $\frac{4}{2}$ $\frac{4}{4}$ $\frac{4}{2}$ $\frac{2}{4}$ $\frac{4}{4}$ $\frac{2}{2}$		Etwas Mathe
4 - 2/	2, 0, 0, 0, 2, 2, 2, 2		
4 <i>a</i> 2/ <i>m</i>	$0, 0, 0; 0, \frac{1}{2}, \frac{1}{2}.$		Strukturlösung
	Symmetry of special projections		PATTERSON-Methode
(001) $pmm; a' = \frac{a}{2}$	$b' = \frac{b}{2}$ (100) $pam; b' = \frac{b}{2}, c' = c$ (010)	pmm ; $c' = \frac{c}{2}$, $a' = \frac{a}{2}$	Direkte Methoden
$(\cdots, r, \dots, w) = 2$	$\frac{1}{2}$ (100) $\frac{1}{2}$ (100) $\frac{1}{2}$ (100)	$r_{1}, \ldots, r_{2}, \ldots, r_{2$	CF Mathada
			Or-Methode
			S -Verfeinerung

10. Einkristallstrukturbestimmung

Symmetrie im realen und reziproken Raum

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration LORENTZ-Korrektur Polarisations-K.
- Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung Patterson-Methode Direkte Methoden

CF-Methode

S.-Verfeinerung

Beispiel Sr_xIn_y

10. Einkristallstrukturbestimmung

24	448 hkl - Refle 247 Okl - Refle 278 hOl - Refle 187 hkO - Refle	exe exe exe exe		19 h 10 0 30 0 154 h	100 - F 0k0 - F 001 - F 1h1 - F	leflexe Leflexe Leflexe Leflexe	
							Bougungs
Incerter	enzbeurngung	Osig	2sig	4sig	6sig	8sig	symbol
Reflexe	nur vorh. f.						-
hkl	h+k+1=2n	1190	1044	962	891	835	I
	h+1=2n	1172	1032	953	884	831	B
	h+k=2n	1166	1027	951	896	844	C
	n+1=2n	1108	1023	946	682	621	A
0kl	k+1=2n	120	102	94	91	88	- n
	k=2n	121	103	95	90	85	- b
hhl	1=2n	62	13	4	1	0	c
h00	h=2n	11	11	9	8	8	- 21
	h=4n	15	15	13	12	12	- 41
001	1=2n	12	1	0	0	0	21
	1=4n	21	10	9	9	9	41
	1=3n	10	19	10	10	10	31
	1=31 1=6n	24	13	12	12	12	61

Zusammenfassung FRIEDEL, LAUE-Klasse, Beugungssymbol

- ▶ Indizierung: reziprokes Gitter, ggf. mit symmetriebedingter Metrik
- ▶ LAUE-Klasse: Mittelung über symmetrie
äquivalente Daten $\mapsto R_{\rm int}$
- Gesamtzentrierung aus integralen Auslöschungen (BRAVAIS-Zelle)
- Beugungssymbol: Sammlung aller aus den Auslöschungsbedingungen folgenden Symmetrieelemente
 - ▶ für das Sr/In-Beispiel: P6₃/??c
- mögliche Raumgruppen:
 - Für das Sr/In-Beispiel: $P6_3/mmc$ und $P6_3mc$
- insgesamt 81 verschiedene Beugungssymbole

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- ${\it Auslöschungen}$
- Etwas Mathe
- Strukturlösung PATTERSON-Methode Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

1 Datensammlung
2 Datenreduktion
3 Symmetrie im realen/reziproken I
4 Etwas Mathematik
5 Strukturlösung
6 Strukturverfeinerung
Errobnicae

8 Literatur, Programme, Datenbanken

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- ${\rm Absorptions}\text{-}{\rm K}.$

Symmetrie

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- ${\it Auslöschungen}$

Etwas Mathe

- Strukturlösung Patterson-Methode
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung

Das Phasenproblem

Basics:
$$F_{hkl} = \sum_{j=1}^{N} f_j e^{2\pi i (hx_j + ky_j + lz_j)}$$
(1)

bzw. in Vektorform: $F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \cdot \vec{x_j})}$ (2)

 $_{\rm mit}$

- \blacktriangleright $F_{\vec{h}}$: Strukturfaktor
- $j = 1 \dots N$: Atome in der Elementarzelle
- ▶ f_j : Atomformfaktoren = f(Gesamtelektronenzahl des Atoms, λ , θ)
- ▶ e^{\cdots} = Phase \mapsto Strukturinformation $\vec{x_j}$ (relative Anordnung der Streuzentren zueinander)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\bf Absorptions}\textbf{-}{\bf K}.$

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode

CF-Methode

S.-Verfeinerung

Das Phasenproblem

Basics:
$$F_{hkl} = \sum_{j=1}^{N} f_j e^{2\pi i (hx_j + ky_j + lz_j)}$$
(1)

bzw. in Vektorform: $F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \vec{x_j})}$ (2)

 $_{\rm mit}$

- \blacktriangleright $F_{\vec{h}}$: Strukturfaktor
- ▶ $j = 1 \dots N$: Atome in der Elementarzelle
- ▶ f_j : Atomformfaktoren = f(Gesamtelektronenzahl des Atoms, λ , θ)
- ▶ e^{\cdots} = Phase \mapsto Strukturinformation $\vec{x_j}$ (relative Anordnung der Streuzentren zueinander)

alternativ zu (2) als Integral über das Volumen der Elementarzelle:

$$F_{\vec{h}} = \int_{V_{EZ}} \rho_{\vec{x}} e^{2\pi i \vec{h} \vec{x}} dV \quad (3)$$

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\bf Absorptions}\textbf{-}{\bf K}.$

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode

CF-Methode

S.-Verfeinerung

 $\mathbf{Ergebnisse}$

Das Phasenproblem

Basics:
$$F_{hkl} = \sum_{j=1}^{N} f_j e^{2\pi i (hx_j + ky_j + lz_j)}$$
(1)

bzw. in Vektorform: $F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \cdot \vec{x_j})}$ (2)

 $_{\rm mit}$

- ▶ F_k: Strukturfaktor
- ▶ $j = 1 \dots N$: Atome in der Elementarzelle
- ► f_j : Atomformfaktoren = f(Gesamtelektronenzahl des Atoms, λ , θ)
- ▶ e^{\cdots} = Phase \mapsto Strukturinformation $\vec{x_j}$ (relative Anordnung der Streuzentren zueinander)
- alternativ zu (2) als Integral über das Volumen der Elementarzelle:

 $F_{\vec{h}} = \int_{V_{EZ}} \rho_{\vec{x}} e^{2\pi i \vec{h} \vec{x}} dV \quad (3)$

Phasenproblem:

- F_{*h*} nicht messbar, sondern nur Reflex-Intensitäten $I_{\vec{h}} = F_{\vec{h}}^2$
- ► → Phaseninformation geht verloren
- (bei zentrosymmetrischen Strukturen Vorzeicheninformation)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\bf Absorptions}\textbf{-}{\bf K}.$

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

Symmetrie

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- Auslöschungen

Etwas Mathe

Strukturlösung

- PATTERSON-Methode
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

• eindimensional: (Mathe I/II):

▶ periodische Funktion f(x) (Periode L) \mapsto als Fourier-Reihe entwickelt:

 $f(x) = \sum_{n} A_n e^{2\pi i \frac{nx}{L}} \quad (4 a)$

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung

PATTERSON-Methode

Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

• eindimensional: (Mathe I/II):

▶ periodische Funktion f(x) (Periode L) \mapsto als Fourier-Reihe entwickelt:

$$f(x) = \sum_{n} A_n e^{2\pi i \frac{nx}{L}} \quad (4 a)$$

mit Fourier-Koeffizienten:

$$A_n = \frac{1}{L} \int f(x) e^{-2\pi i \frac{nx}{L}} dx \quad (3 \text{ a})$$

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

 ${\it Auslöschungen}$

Etwas Mathe

Strukturlösung

PATTERSON-Methode

Direkte Methoden

CF-Methode

S.-Verfeinerung

• eindimensional: (Mathe I/II):

▶ periodische Funktion f(x) (Periode L) \mapsto als Fourier-Reihe entwickelt:

$f(x) = \sum_{n} A_{n} e^{2\pi i \frac{nx}{L}}$	(4 a)
---	-------

mit Fourier-Koeffizienten:

$$A_n = \frac{1}{L} \int f(x) e^{-2\pi i \frac{nx}{L}} dx \quad (3 \text{ a})$$

Übertragung:

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

 ${\it Auslöschungen}$

Etwas Mathe

Strukturlösung

PATTERSON-Methode

Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

• eindimensional: (Mathe I/II):

▶ periodische Funktion f(x) (Periode L) \mapsto als Fourier-Reihe entwickelt:

$$f(x) = \sum_{n} A_n e^{2\pi i \frac{nx}{L}} \quad (4 a)$$

mit Fourier-Koeffizienten:

$$A_n = \frac{1}{L} \int f(x) e^{-2\pi i \frac{nx}{L}} dx \quad (3 \text{ a})$$

Übertragung:

Strukturfaktor $F \mapsto$ periodische Funktion der Elektronendichte $\rho_{\vec{x}}$:

$$F_{\vec{h}} = \int \rho_{\vec{x}} e^{2\pi i \vec{h} \vec{x}} dV \quad (3)$$

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\bf Absorptions}\textbf{-}{\bf K}.$

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung Patterson-Methode

Direkte Methoden CF-Methode

S.-Verfeinerung

eindimensional: (Mathe I/II):

▶ periodische Funktion f(x) (Periode L) \mapsto als Fourier-Reihe entwickelt:

$$f(x) = \sum_{n} A_n e^{2\pi i \frac{nx}{L}} \quad (4 a)$$

mit Fourier-Koeffizienten:

$$A_n = \frac{1}{L} \int f(x) e^{-2\pi i \frac{nx}{L}} dx \quad (3 \text{ a})$$

Übertragung:

Strukturfaktor $F \mapsto$ periodische Funktion der Elektronendichte $\rho_{\vec{x}}$:

$$F_{\vec{h}} = \int \rho_{\vec{x}} e^{2\pi i \vec{h} \cdot \vec{x}} dV \quad (3$$

Vergleich mit Prinzip der Fourier-Synthese

$$\rho_{\vec{x}} = \frac{1}{V} \sum_{\vec{h}} F_{\vec{h}} e^{-2\pi i \vec{h} \cdot \vec{x}} \quad (4$$

- $F_{\vec{h}}$ sind die Fourierkoeffizienten der periodischen Funktion ρ_x :
- Elektronendichte = Fourierreihe der F-Werte
- F-Werte = Fouriertransformierte der Elektronendichte

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\bf Absorptions}\textbf{-}{\bf K}.$

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung Patterson-Methode

Direkte Methoden

CF-Methode

S.-Verfeinerung
Prinzip der Fouriertransformation

• eindimensional: (Mathe I/II):

▶ periodische Funktion f(x) (Periode L) \mapsto als Fourier-Reihe entwickelt:

$$f(x) = \sum_{n} A_n e^{2\pi i \frac{nx}{L}} \quad (4 a)$$

mit Fourier-Koeffizienten:

$$A_n = \frac{1}{L} \int f(x) e^{-2\pi i \frac{nx}{L}} dx \quad (3 \text{ a})$$

Übertragung:

Strukturfaktor $F \mapsto$ periodische Funktion der Elektronendichte $\rho_{\vec{x}}$:

$$F_{\vec{h}} = \int \rho_{\vec{x}} e^{2\pi i \vec{h} \cdot \vec{x}} dV \quad (3$$

Vergleich mit Prinzip der Fourier-Synthese

$$\rho_{\vec{x}} = \frac{1}{V} \sum_{\vec{h}} F_{\vec{h}} e^{-2\pi i \vec{h} \cdot \vec{x}} \quad (4$$

- $F_{\vec{h}}$ sind die Fourierkoeffizienten der periodischen Funktion ρ_x :
- Elektronendichte = Fourierreihe der F-Werte
- F-Werte = Fouriertransformierte der Elektronendichte

Anwendung:

- ▶ für bekannte $F \mapsto$ Elektronendichtekarte ρ_x mit (4) berechenbar
- ► → Basis jeder Strukturverfeinerung

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

Symmetrie

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode

- Direkte Methoden
- CF-Methode

S.-Verfeinerung

Übersicht: realer – reziproker Raum

Raum	reziprok	real
Ort (Koord.)	$\vec{h} = h, k, l$	$\vec{x} = x, y, z$
Amplitude	Strukturfaktor F	Elektronendichte ρ
	$\begin{aligned} F_{\vec{h}} &= \sum_{j=1}^{N} f_{j} e^{2\pi i (\vec{h} \cdot \vec{x_{j}})} & (2) \\ F_{\vec{h}} &= \int \rho_{\vec{x}} e^{2\pi i \vec{h} \cdot \vec{x}} dV & (3) \end{aligned}$	$\rho_{\vec{x}} = \frac{1}{V} \sum_{\vec{h}} F_{\vec{h}} e^{-2\pi i \vec{h} \cdot \vec{x}} (4)$
Symmetrie	11 LAUE-Klassen	32 Punktgruppen
	81 Beugungssymbole	230 Raumgruppen
	aus F^2	
	<u>keine</u> Translationssymmetrie	${\it translations symmetrisch}$

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung

PATTERSON-Methode

Direkte Methoden

CF-Methode

S.-Verfeinerung

 $\mathbf{Ergebnisse}$

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

 $\mathbf{Ergebnisse}$

1 Datensammlung
2 Datenreduktion
3 Symmetrie im realen/reziproken Rau
4 Etwas Mathematik
5 Strukturlösung
PATTERSON-Methode
6 Strukturverfeinerung
7 Ergebnisse
O Literatur Dramanna Datarbarlar

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- ${\it Polarisations-K}.$
- ${\rm Absorptions}\text{-}{\rm K}.$

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- Auslöschungen
- Etwas Mathe
- Strukturlösung
- PATTERSON-Methode
- Direkte Methoden
- CF-Methode
- S.-Verfeinerung
- Ergebnisse

älteste Methode, auch ohne Rechner verwendbar

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz

LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung

 ${\it Patterson-Methode}$

Direkte Methoden

CF-Methode

S.-Verfeinerung

älteste Methode, auch ohne Rechner verwendbar

• <u>Idee:</u> analog (4) für ρ_x :

$$\rho_{\vec{x}} = \frac{1}{V} \sum_{\vec{h}} F_{\vec{h}} e^{-2\pi i \vec{h} \vec{x}} \quad (4)$$

werden statt F einfach F^2 (Messung!) eingesetzt \mapsto neue Funktion (PATTERSON-Funktion) (mit Ortskoordinaten $u, v, w = \vec{u}$):

$$P_{\vec{u}} = \frac{1}{V} \sum_{\vec{h}} F_{\vec{h}}^2 e^{-2\pi i \vec{h} \cdot \vec{u}}$$
(5)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz

LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung

PATTERSON-Methode

Direkte Methoden

CF-Methode

S.-Verfeinerung

älteste Methode, auch ohne Rechner verwendbar

• <u>Idee:</u> analog (4) für ρ_x :

$$\rho_{\vec{x}} = \frac{1}{V} \sum_{\vec{h}} F_{\vec{h}} e^{-2\pi i \vec{h} \vec{x}} \quad (4)$$

werden statt F einfach F^2 (Messung!) eingesetzt \mapsto neue Funktion (PATTERSON-Funktion) (mit Ortskoordinaten $u, v, w = \vec{u}$):

$$P_{\vec{u}} = \frac{1}{V} \sum_{\vec{h}} F_{\vec{h}}^2 e^{-2\pi i \vec{h} \cdot \vec{u}}$$
(5)

durch Einsetzen von (3)

$$F_{\vec{h}} = \int \rho_{\vec{x}} e^{2\pi i \vec{h} \vec{x}} dV \quad (3)$$

für F in (5) folgt für $P_{\vec{u}}$:

$$P_{\vec{u}} = \frac{1}{V} \int_{V} \rho_{\vec{x}} \rho_{\vec{x}+\vec{u}} dV \quad (6)$$

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\bf Absorptions}\textbf{-}{\bf K}.$

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung

i AllERSON-METHODE

Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

älteste Methode, auch ohne Rechner verwendbar

• <u>Idee:</u> analog (4) für ρ_x :

$$\rho_{\vec{x}} = \frac{1}{V} \sum_{\vec{h}} F_{\vec{h}} e^{-2\pi i \vec{h} \cdot \vec{x}} \quad (4)$$

werden statt F einfach F^2 (Messung!) eingesetzt \mapsto neue Funktion (PATTERSON-Funktion) (mit Ortskoordinaten $u, v, w = \vec{u}$):

$$P_{\vec{u}} = \frac{1}{V} \sum_{\vec{h}} F_{\vec{h}}^2 e^{-2\pi i \vec{h} \cdot \vec{u}}$$
(5)

durch Einsetzen von (3)

$$F_{\vec{h}} = \int \rho_{\vec{x}} e^{2\pi i \vec{h} \vec{x}} dV \quad (3)$$

für F in (5) folgt für $P_{\vec{u}}$:

$$P_{\vec{u}} = \frac{1}{V} \int_{V} \rho_{\vec{x}} \rho_{\vec{x}+\vec{u}} dV \quad (6)$$

 $\triangleright \mapsto P_{\vec{u}}$ ist Amplitude in einem Vektorraum \vec{u} (PATTERSON-Raum)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\bf Absorptions}\textbf{-}{\bf K}.$

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

Strukturlösung

Direkte Methoden

CF-Methode

S.-Verfeinerung

Übersicht: realer – reziproker – PATTERSON-Raum

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

tegien

eduktion

ion Korrektur

tions-K.

ions-K.

trie

ces Gitter ches Gesetz ssen hungen Etwas Mathe Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

Raum	reziprok	real	Vektor	Meßstrat
Ort	$\vec{h} = h, k, l$	$\vec{x} = x, y, z$	$\vec{u}=u,v,w; u=x_1-x_2\ldots$	Datenre
Amplitude	Strukturfaktor F	Elektron endichte ρ	Patterson-Funktion P	Integrat
	$F_{\vec{x}} = \sum_{i=1}^{N} f_{i} e^{2\pi i (\vec{h} \cdot \vec{x_{j}})}$			LORENTZ-1
	$F_{\vec{\tau}} = \int \rho_{\vec{\tau}} e^{2\pi i \vec{h} \vec{x}} dV$	$\rho_{\vec{x}} = \frac{1}{2\pi} \sum_{\vec{x}} F_{\vec{x}} e^{-2\pi i \vec{h} \cdot \vec{x}}$	$P_{\vec{\tau}} = \frac{1}{2} \sum_{\vec{\tau}} F_{\vec{\tau}}^2 e^{-2\pi i \vec{h} \vec{u}}$	Polarisa
	h Jrx	$rx V \simeq h \cdot h$	$P_{-} = \frac{1}{2} \int e^{-\frac{1}{h}} e^{-\frac{1}{h}} dV$	Absorpt
			$I \overline{u} = \overline{V} J V p \overline{x} p \overline{x} + \overline{u} u v$	G
Symmetrie	11 LAUE-Klassen	32 Punktgruppen	24 Patterson-Gruppen	Symme
	81 Beugungssymbole	230 Raumgruppen	HARKER-Geraden;	Reziprol
	aus F^2		HARKER-Schnitte	FRIEDEL'S
	keine Translationssym.	translationssymmetrisch	translationssymmetrisch	LAUE-Kla
		· · · · · · · · · · · · · · · · · · ·		Anglösch

... wieder das eindimensionale Beispiel

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- Auslöschungen
- Etwas Mathe
- Strukturlösung
- PATTERSON-Methode
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- $\mathbf{Ergebnisse}$

PATTERSON-Funktion: Anwendung

▶ anschaulich:

- PATTERSON-Maxima an den Orten *u*, wo Kombinationsvektoren 2-er Atome liegen (Vektorraum!)
- d.h. erkennbar werden Abstände vom jeweiligen Atom aus gesehen
- ▶ in vielen Programmen implementiert (z.B. in SHELXS: PATT)

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- Auslöschungen
- Etwas Mathe
- Strukturlösung PATTERSON-Methode
- FATTERSON-Methode
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

PATTERSON-Funktion: Anwendung

anschaulich:

- PATTERSON-Maxima an den Orten *u*, wo Kombinationsvektoren 2-er Atome liegen (Vektorraum!)
- d.h. erkennbar werden Abstände vom jeweiligen Atom aus gesehen
- ▶ in vielen Programmen implementiert (z.B. in SHELXS: PATT)

► Nachteile:

- sehr breites Maximum bei P_{0,0,0}
- Maxima hängen immer von zwei atomaren Elektronendichten ab
- Maxima sind <u>breiter</u> als bei der Fouriersynthese der F-Werte (Elektronendichtekarten)
- sehr viele Peaks, da die Maxima bei Interkombinationsvektoren liegen

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- ${\bf Absorptions}\textbf{-}{\bf K}.$

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung
- PATTERSON-Methode
- CF-Methode
- S.-Verfeinerung
- Ergebnisse

PATTERSON-Funktion: Anwendung

anschaulich:

- PATTERSON-Maxima an den Orten
 ü, wo Kombinationsvektoren 2-er Atome liegen (Vektorraum!)
- d.h. erkennbar werden Abstände vom jeweiligen Atom aus gesehen
- ▶ in vielen Programmen implementiert (z.B. in SHELXS: PATT)

► Nachteile:

- sehr breites Maximum bei P_{0,0,0}
- Maxima hängen immer von zwei atomaren Elektronendichten ab
- Maxima sind <u>breiter</u> als bei der Fouriersynthese der F-Werte (Elektronendichtekarten)
- sehr viele Peaks, da die Maxima bei Interkombinationsvektoren liegen
- daher i.A. nur geeignet für
 - Schweratomstrukturen (z.B. Metallkomplexe) (1 Vektor dominiert P_u)
 - aber: bei Schweratom-Ersatz auch für Proteine

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung
- Direkte Methoden
- CF-Methode
- S.-Verfeinerung
- Ergebnisse

Beispiel: SHELXS-Input

TITL Sr - In CELL 0.71070 5.009 5.009 90.0 90.0 120.0 8.036 ZERR 2 0.0020 0.0020 0.0040 0.0 0.0 0.0 P 63/M M C,NR.194 LATT 1 SYMM -Y, X-Y, Z SYMM Y-X, -X, Ζ SYMM Х-Ү. -Ү. .5+Z SFAC SR IN UNIT 4 4 OMIT 2 PATT FMAP 10 HKLF 4 1

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- Auslöschungen
- Etwas Mathe
- Strukturlösung
- ${\it Patterson-Methode}$
- Direkte Methoden
- CF-Methode
- S.-Verfeinerung
- Ergebnisse

Beispiel: SHELXS-Output (Auszug I)

Super-sharp Patterson for SrIn

Maximum = 999.10, minimum = -69.32 highest memory used = 9320 / 3956

0.1 seconds CPU time

Rms Patterson density excluding points close to the origin or an equivalent lattice point is 34.45

	X	Y	Z	Weight	Peak	Sigma	Length
1	0.0000	0.0000	0.0000	24.	999.	29.00	0.00
2	0.0000	0.0000	0.4092	12.	347.	10.07	3.29
3	0.6667	0.3333	0.5000	12.	343.	9.97	4.95
4	0.6667	0.3333	0.2076	6.	253.	7.34	3.34
5	0.6667	0.3333	0.2945	6.	224.	6.49	3.74
6	0.6667	0.3333	0.0870	6.	150.	4.35	2.98
7	0.5000	0.0000	1.0000	8.	48.	1.41	2.50
8	0.5000	0.0000	0.5000	8.	47.	1.36	4.73
9	0.9364	0.1840	0.0000	2.	42.	1.21	1.12

vgl.: eine In-Atomposition (s.u.): 2/3, 1/3, 0.4569

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FREDEL'sches Gesetz Lute-Klassen Auslöschungen Etwas Mathe Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

Beispiel: SHELXS-Output (Auszug II)

Patterson vector superposition minimum function for Sr - In Datensammlung Diffraktometer Patt. sup. on vector 1 0.6667 0.3333 0.2076 Height 253. Length 3.34 Images Indizierung Maximum = 217.13, minimum = -123.52 highest memory used = 12281 / 7798 Meßstrategien 58 Superposition peaks employed, maximum height 49.5 and minimum height 2.8 on atomic number scale Integration Heavy-Atom Location for SrIn LOPENTZ-Korrektur 109 reflections used for structure factor sums Polarisations-K Solution CFOM = 81.78Corr. Coeff. = 90.5Absorptions-K. 1 PATFOM = 99.9SYMFOM = 99.9Symmetrie Shift to be added to superposition coordinates: 0.3326 1.1656 0.3485 Reziprokes Gitter FRIEDEL'sches Gesetz Name At.No. s.o.f. Minimum distances/PATSMF (self first) x V z LAUE-Klassen TN1 0.3333 0.4569 2.97 52 4 0 6667 0.1667 160.2 Auslöschungen Etwas Mathe TN2 48 1 1 0000 0 0000 0 2500 0.0833 4 02 3.34 169.6 247.6 Strukturlösung PATTERSON-Methode SR3 13.3 0.6667 0.3333 0.6546 0.1667 1.53 1.59 2.99 Direkte Methoden 0.0 64.3 0.0 CF-Methode

10. Einkristallstrukturbestimmung

S.-Verfeinerung Ergebnisse

1 Datensammlung
2 Datenreduktion
3 Symmetrie im realen/reziproken Rau
④ Etwas Mathematik
5 Strukturlösung
Direkte Methoden
6 Strukturverfeinerung
7 Ergebnisse
Q Literatur Programme Datenbanken

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- ${\rm Absorptions}\text{-}{\rm K}.$

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- Auslöschungen
- Etwas Mathe
- Strukturlösung
- ${\it Patterson-Methode}$
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

Brute force-Methode zur Phasenbestimmung

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter

LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung

PATTERSON-Methode

Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

Brute force-Methode zur Phasenbestimmung

Idee/Grundprinzipien

- $\rho_{\vec{x}}$ darf an keinem Ort \vec{x} negativ sein ($\rho_{\vec{x}} > 0$)
- $\triangleright \rho_{\vec{x}}$ ist an den Atompositionen konzentriert

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

- Reziprokes Gitter FRIEDEL'sches Gesetz
- LAUE-Klassen
- Auslöschungen
- Etwas Mathe
- Strukturlösung
- ${\it Patterson-Methode}$
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

Brute force-Methode zur Phasenbestimmung

Idee/Grundprinzipien

- $\rho_{\vec{x}}$ darf an keinem Ort \vec{x} negativ sein ($\rho_{\vec{x}} > 0$)
- ρ_{x̄} ist an den Atompositionen konzentriert

\blacktriangleright \mapsto Reflexstatistiken

- HARKER-KASPER-Ungleichungen (1948)
- SAYRE-Gleichung (1952) (Triplett-Beziehung, TPR) $s(\vec{h_1})s(\vec{h_2})s(\vec{h_1} + \vec{h_2}) \approx 1$

mit:

- s: Vorzeichen
- \approx ist mit einer bestimmten Wahrscheinlichkeit (abhängig vom F-Wert)
- Quartett-Beziehungen,

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

 ${\bf Absorptions}\textbf{-}{\bf K}.$

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung PATTERSON-Methode

Direkte Methoden

CF-Methode

S.-Verfeinerung

Brute force-Methode zur Phasenbestimmung

Idee/Grundprinzipien

- ▶ $\rho_{\vec{x}}$ darf an keinem Ort \vec{x} negativ sein ($\rho_{\vec{x}} > 0$)
- $\triangleright \rho_{\vec{x}}$ ist an den Atompositionen konzentriert

\blacktriangleright \mapsto Reflexstatistiken

- HARKER-KASPER-Ungleichungen (1948)
- SAYRE-Gleichung (1952) (Triplett-Beziehung, TPR) $s(\vec{h_1})s(\vec{h_2})s(\vec{h_1}+\vec{h_2}) \approx 1$

mit:

- s: Vorzeichen
- \approx ist mit einer bestimmten Wahrscheinlichkeit (abhängig vom F-Wert)
- Quartett-Beziehungen,
- statistische Aussagen zu Beziehung zwischen den <u>Vorzeichen</u> von mindestens 3 Reflexen

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration LORENTZ-Korrektur

Polarisations-K.

 ${\bf Absorptions}\textbf{-}{\bf K}.$

Symmetrie

Reziprokes Gitter FREDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung PATTERSOX-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

Brute force-Methode zur Phasenbestimmung

Idee/Grundprinzipien

- ▶ $\rho_{\vec{x}}$ darf an keinem Ort \vec{x} negativ sein ($\rho_{\vec{x}} > 0$)
- $\triangleright \rho_{\vec{x}}$ ist an den Atompositionen konzentriert

\blacktriangleright \mapsto Reflexstatistiken

- HARKER-KASPER-Ungleichungen (1948)
- SAYRE-Gleichung (1952) (Triplett-Beziehung, TPR) $s(\vec{h_1})s(\vec{h_2})s(\vec{h_1}+\vec{h_2}) \approx 1$

mit:

- s: Vorzeichen
- \approx ist mit einer bestimmten Wahrscheinlichkeit (abhängig vom F-Wert)
- Quartett-Beziehungen,
- statistische Aussagen zu Beziehung zwischen den <u>Vorzeichen</u> von mindestens 3 Reflexen
- bei nichtzentrosymmetrischen Strukturen komplizierter

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FREDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode S.-Verfeinerung

Direkte Methoden: Anwendung (Programm-Prinzip)

- **0** geschickte Wahl starker Reflexe (große *E*-Werte)
- 2 zufällige Wahl von Phasen/Vorzeichen für diese Reflexe
- 0Test auf Konsistenz mit den statistischen Aussagen (TPR usw.) \mapsto z.B. CFOM
- $\mathbf{O} \mapsto \text{schlechte Übereinstimmung} \mapsto \text{GOTO } \mathbf{O}$
- $\mathbf{O} \mapsto \text{gute Übereinstimmung}$
 - \mapsto Berechnung der Phasen aller Reflexe aus den TPRs usw.
- **6** Fouriersynthese der E-Werte \mapsto Elektronendichte-Karten
- Zuordnung der Maxima der Elektronendichte zu Atomen

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen

Etwas Mathe

 $\operatorname{Strukturlösung}$

 ${\it Patterson-Methode}$

Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

Direkte Methoden: Beispiel mit SHELXS-Input

TITL SrIn CELL 0.71070 5.009 5.009 8.036 90.0 90.0 120.0 ZERR 2 0.0020 0.0020 0.0040 0.0 0.0 0.0 P 63/M M C,NR.194 LATT 1 SYMM -Y, X-Y, Z SYMM Х−Ү, −Ү, .5+Z SFAC SR IN UNIT 2 4 OMIT 2 TREF FMAP 10 HKLF 4 1

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz

LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung

PATTERSON-Methode

Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

Beispiel: SHELXS-Output (Auszug I)

SUMMARY OF PARAMETERS FOR SrIn

ESEL. Emin 1.200 Emax 5,000 DellI 0.005 renorm 0.700 axis 0 OMIT s 2.00 2theta(lim) 180.0 TNTT 7 nf 16 s+ 0.800 0.200 0.200 nn swr PHAN 10 cool 0.900 Boltz 0.400 steps ns 24 40 mngr 10 mtpr TREF np 256. nE 24 kapscal 0.900 2 wn -0.950 ntan FMAP code 10 PLAN npeaks -5 del1 0.500 del2 1.500 MORE verbositv 1 TIME 99999999 t.

19 Reflections and 95. unique TPR for phase annealing

Phases refined using
 unique TPR
 Reflections and
 unique TPR for R(alpha)
 Unique negative quartets found,
 used for phase refinement

ONE-PHASE SEMINVARIANTS

k 1 E P+ Phi h -2 4 0 1.865 1.00 2 2 1.656 0.32 0 4 2 1.693 0.25 -2 4 4 1.663 0.86 Expected value of Sigma-1 = 0.837

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer Images

Indizierung

.

Meßstrategien

Datenreduktion

Integration LORENTZ-Korrektur

Polarisations-K.

 ${\bf Absorptions}\textbf{-}{\bf K}.$

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe

Strukturlösung

PATTERSON-Methode

Direkte Methoden

CF-Methode

S.-Verfeinerung

Beispiel: SHELXS-Output (Auszug II)

Following phases held constant with unit weights for the initial 4 weighted tangent cycles (before phase annealing):

h	k	1	E	Phase/Comment			
-1	2	0	1.604	random	phase		
-2	4	0	1.865	0	sigma-1	=	0.997
• • • •							
-2	4	4	1.663	0	sigma-1	=	0.859

All other phases random with initial weights of 0.200 replaced by 0.2*alpha (or 1 if less) during first 4 cycles - unit weights for all phases thereafter 128 Parallel refinements, highest memory = 414 / 5520

 Try
 Ralpha
 Nqual
 Sigma-1
 M(abs)
 CFOM
 Seminvariants

 1420309.
 0.756
 0.000
 0.623
 0.573
 0.756
 ++++

 597829.
 0.035
 0.000
 1.000
 1.230
 0.035
 +--+

 1702605.
 0.035
 0.000
 1.000
 1.230
 0.035
 +--+

CFOM Range Frequency 0.000 - 0.020 0 0.020 - 0.040 232 0.040 - 0.060 0 0.140 - 0.160 0 0.600 - 9.999 24 256. Phase sets refined - best is code 2038433. with CFOM = 0.0353

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration LORENTZ-Korrektur Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FREDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

Beispiel: SHELS-Output (Auszug III)

E-Fourier for SrIn Maximum = 646.79, minimum = -152.38 highest memory used = 8680 / 1741 Datensammlung Heavy-atom assignments: Diffraktometer s.o.f. Height x V z Images 0.6667 0.3333 0.0456 0.1667 646.8 TN1 Indizierung Peak list optimization Meßstrategien RE = 0.290 for 1 surviving atoms and 41 E-values Highest memory used = 1495/369 Datenreduktion E-Fourier for SrIn Integration Maximum = 634.84, minimum = -153.68 highest memory used = 8696 / 1741 LOPENTZ-Korrektur Peak list optimization Polarisations-K. RE = 0.134 for 2 surviving atoms and 41 E-values Highest memory used = 1511/369 Absorptions-K. E-Fourier for SrIn Symmetrie Maximum = 600.29, minimum = -141.74 highest memory used = 8720 / 1741 Reziprokes Gitter FRIEDEL'sches Gesetz 3.326 TN1 0. 0.6667 0.3333 0.0456 0.167 3.14 0 1 LAUE-Klassen 0 2 3.326 120.8 Auslöschungen 2 342 49 0 87 9 0.3 2.605 30.2 145.1 77.0 04 Etwas Mathe 0 5 1.866 74.4 87.4 108.2 68.3 Strukturlösung 1 TN1 2 983 164 6 43 8 121 2 161 7 101 7 PATTERSON-Methode 3.326 1 487. 1.0000 0.0000 0.2500 0.083 4.12 O TN1 Direkte Methoden 0.3 2 514 44 6 CF-Methode 1,695 50,6 92,2 04 S.-Verfeinerung

10. Einkristallstrukturbestimmung

Direkte Methoden: Vor/Nachteile

► Vorteile:

- gute Chance f
 ür die meisten Strukturen mit gleichen Streuern (reine Organik, Intermetallisches)
- bei Anwendung von Quartetts recht robust (z.B. bzgl. Symmetriefehlern)
- heute die am meisten verwendete Methode bei Standard-Strukturanalysen
- in SHELXS umfassend implementiert (Quartett-Beziehung, Phase-Annealing usw.)

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

- Reziprokes Gitter FRIEDEL'sches Gesetz
- LAUE-Klassen
- Auslöschungen
- Etwas Mathe
- Strukturlösung
- ${\it Patterson-Methode}$
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

Direkte Methoden: Vor/Nachteile

► Vorteile:

- gute Chance f
 ür die meisten Strukturen mit gleichen Streuern (reine Organik, Intermetallisches)
- bei Anwendung von Quartetts recht robust (z.B. bzgl. Symmetriefehlern)
- heute die am meisten verwendete Methode bei Standard-Strukturanalysen
- in SHELXS umfassend implementiert (Quartett-Beziehung, Phase-Annealing usw.)

Nachteile:

- Probleme mit zentrosymmetrischen Strukturen (wie auch bei PATTERSON)
- Lösung von Strukturen
 - mit mehr als 3 Dimensionen (modulierte Strukturen),
 - mit extremer dynamischer Fehlordnung von Schweratomen,
 - aus Pulvern,
 - von Quasikristallen

nicht möglich

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz

LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung

 ${\it Patterson-Methode}$

Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

1 Datensammlung
2 Datenreduktion
3 Symmetrie im realen/reziproken Raum
④ Etwas Mathematik
5 Strukturlösung
Charge-Flipping
6 Strukturverfeinerung
7 Ergebnisse

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- ${\it Polarisations-K}.$
- ${\rm Absorptions}\text{-}{\rm K}.$

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- ${\it Auslöschungen}$
- Etwas Mathe
- Strukturlösung
- ${\it Patterson-Methode}$
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- $\mathbf{Ergebnisse}$

Charge-Flipping: Idee und Algorithmus

G. Oszlanyi, A. Sütő (2004), L. Palatinus (Programm Superflip)

10. Einkristallstrukturbestimmung

Datensammlung

Diffraktometer

Images

Indizierung

Meßstrategien

Datenreduktion

Integration

LORENTZ-Korrektur

Polarisations-K.

Absorptions-K.

Symmetrie

Reziprokes Gitter FRIEDEL'sches Gesetz

LAUE-Klassen

Auslöschungen

Etwas Mathe

Strukturlösung

 ${\it Patterson-Methode}$

Direkte Methoden

 $\operatorname{CF-Methode}$

S.-Verfeinerung

 $\mathbf{Ergebnisse}$

Charge-Flipping: Idee und Algorithmus

- G. Oszlanyi, A. Sütő (2004), L. Palatinus (Programm SUPERFLIP)
- ► Ansatz/Idee

b die Elektronendichte darf an keinem Ort \vec{x} negativ sein ($\rho_{\vec{x}} > 0$)

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- ${\it Polarisations-K}.$
- ${\rm Absorptions}\text{-}{\rm K}.$

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- Auslöschungen
- Etwas Mathe
- Strukturlösung
- ${\it Patterson-Methode}$
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

Charge-Flipping: Idee und Algorithmus

- G. Oszlanyi, A. Sütő (2004), L. Palatinus (Programm SUPERFLIP)
- ► Ansatz/Idee
 - b die Elektronendichte darf an keinem Ort \vec{x} negativ sein ($\rho_{\vec{x}} > 0$)
- Algorithmus
 - Start: statistische Phasenzuordnung $\phi_{\vec{h}}^n$ zu allen beobachteten Reflexen \vec{h} (alle anderen Reflexe: $\phi^n=0$; $\phi_{\vec{d}}^n$ kritisch!)
 - **2** $\rho_{\vec{x}}^n$ mittels inverser Fourier-Transformation (Gl. 4) berechnen (in einem Volumen-Grid von N1xN2xN3 Voxeln)
 - negative Dichten $\rho_{\vec{x}}^n$ durch positive gleicher Höhe austauschen \mapsto Charge-Flipping \mapsto modifizierte Dichte $(\rho_{\vec{x}}^m)$
 - aus dieser modifizierten Dichte $\rho_{\vec{x}}^m$ mittels Fourier-Transformation (Gl. 3) temporäre Strukturfaktoren $G_{\vec{k}}^m$ berechnen
 - **6** durch Kombination der experimentellen Amplituden mit den Phasen von $G_{\vec{h}}^m$ die neuen Strukturfaktoren F^{n+1} für den nächsten Zyklus ermitteln (alle nicht gemessenen Reflexe: $\phi = 0$)
 - **③** GOTO **❷** (Wiederholung der Schritte **● ④** bis zur Konvergenz)

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

Integration LORENTZ-Korrektur Polarisations-K. Absorptions-K.

$\mathbf{Symmetrie}$

- Reziprokes Gitter FREDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung PATTERSOX-Methode Direkte Methoden CF-Methode
- S.-Verfeinerung
- Ergebnisse

Charge-Flipping: Flowchart

10. Einkristallstrukturbestimmung

1 Datensammlung
2 Datenreduktion
3 Symmetrie im realen/reziproken Rau
(4) Etwas Mathematik
5 Strukturlösung
6 Strukturverfeinerung
Engelación

Literatur Programme Dat

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

Symmetrie

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- Auslöschungen
- Etwas Mathe
- Strukturlösung Patterson-Methode
- Direkte Methoden
- CF-Methode

S.-Verfeinerung

Verfeinerung der Atomparameter (Least-Squares-Verfahren)

▶ Lageparameter $\vec{x_{j}}$ (relativ wenige) gegen beobachtete Strukturfaktoren $F_{\vec{b}}$ (sehr viel mehr) per L.S. verfeinerbar:

$$F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \vec{x_j})} \quad (2)$$

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- ${\rm Absorptions}\text{-}{\rm K}.$

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- LAUE-ICIASSEI
- Auslöschungen
- Etwas Mathe
- Strukturlösung
- PATTERSON-Methode
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse
Verfeinerung der Atomparameter (Least-Squares-Verfahren)

▶ Lageparameter $\vec{x_{j}}$ (relativ wenige) gegen beobachtete Strukturfaktoren $F_{\vec{b}}$ (sehr viel mehr) per L.S. verfeinerbar:

$$F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \vec{x_j})}$$
(2)

▶ Fourier-Karten \mapsto Elektronendichten

F_{\vec{h}} sind die Fourierkoeffizienten der periodischen Funktion ρ_x :

$$\rho_{\vec{x}} = \frac{1}{V} \sum_{\vec{h}} F_{\vec{h}} e^{-2\pi i \vec{h} \cdot \vec{x}} \quad (4$$

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

Symmetrie

- Reziprokes Gitter
- LAUE-Klassen
- Auslöschungen
- Etwas Mathe
- Strukturlösung
- PATTERSON-Methode
- Direkte Methoden
- CF-Methode
- S.-Verfeinerung

Verfeinerung der Atomparameter (Least-Squares-Verfahren)

▶ Lageparameter $\vec{x_{j}}$ (relativ wenige) gegen beobachtete Strukturfaktoren $F_{\vec{b}}$ (sehr viel mehr) per L.S. verfeinerbar:

$$F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \cdot \vec{x_j})}$$
 (2)

▶ Fourier-Karten \mapsto Elektronendichten

▶ $F_{\vec{h}}$ sind die Fourierkoeffizienten der periodischen Funktion ρ_x :

$$\rho_{\vec{x}} = \frac{1}{V} \sum_{\vec{h}} F_{\vec{h}} e^{-2\pi i \vec{h} \cdot \vec{x}}$$
 (4)

▶ Differenz-Fourier-Karten \mapsto Restelektronendichten (weitere Atome?)

 $F_{\vec{h}}^{\text{obs}} - F_{\vec{h}}^{\text{calc}} \text{ sind Fourierkoeffizienten der periodischen Funktion } \Delta \rho_x: \\ \Delta \rho_{\vec{x}} = \rho_{\vec{x}}^{\text{obs}} - \rho_{\vec{x}}^{\text{calc}} = \frac{1}{V} \sum_{\vec{h}} (F_{\vec{h}}^{\text{obs}} - F_{\vec{h}}^{\text{calc}}) e^{-2\pi i \vec{h} \cdot \vec{x}}$ (4 d)

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration LORENTZ-Korrektur Polarisations-K.
- Absorptions-K.

Symmetrie

Reziprokes Gitter FREDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

Beispiel-Input (Programm SHELXL)

TITL SrIn P63/mmc	Datensammlung
CELL 0.71070 5.009 5.009 8.036 90.00 90.0 120.00	Dutonounnung
ZERR 2 0.0020 0.0020 0.0040 0.000 0.0 0.000	Diffraktometer
LATT 1	Images
SYMM X - Y , X , 0.50000 + Z	Indizierung
SYMM - Y , X - Y , Z	Meßstrategien
SYMM - X , - Y , 0.50000 + Z	Datenreduktion
SYMM - X + Y , - X , Z	Integration
SYMM Y, -X+Y, 0.50000 + Z	Integration
SYMM - Y , - X , 0.50000 - Z	LORENTZ-Korrektur
SYMM X - Y , - Y , - Z	Polarisations-K.
SYMM X, X-Y, 0.50000 - Z	Absorptions-K.
SYMM Y, X, -Z	Symmetrie
SYMM - X + Y , Y , 0.50000 - Z	D : J GW
SYMM - X , - X + Y , - Z	Reziprokes Gitter
SFAC SR IN	FRIEDEL'sches Gesetz
UNIT 2 4	LAUE-Klassen
L.S. 10	Auslöschungen
ACTA	Etwas Mathe
FVAR 0.1	Litwas Mathe
IN1 2 0.666667 0.333333 0.045645 10.16667 0.01000	Strukturlösung
SR1 1 0.000000 0.000000 0.250000 10.08330 0.01000	PATTERSON-Methode
HKLF 4 1	Direkte Methoden
END	

END

10. Einkristallstrukturbestimmung

5.- veriennerung

Ergebnisse

CF-Methode

Beispiel-Output (Programm SHELXL)

10. Einkristallstrukturbestimmung

V =		174.61	F(000)	= 272.	.0 Mu	ı = 28.0	2 mm-1	Cell Wt	= 634.52	Rho = 6.0	34 atensammlung
											Diffraktometer
h	k	1	Fo^2	Sigma	Why re	jected					Images
											Indizierung
-1	2	1	28.35	6.28	observe	ed but sh	ould be sy	ystematica	lly absent		Meßstrategien
	4	3	21.40	4.31	observe	d but sh	ould be sy	ystematica	lly absent		Datenreduktion
											Integration
24	148	Reflect:	ions read,	of which	210 re	jected					LORENTZ-Korrektur
-6 =	=< h	=< 6,	-6 =<]	k =< 6,	-10 =<	1 =< 9,	Max. 2-	-theta =	57.66		Polarisations-K.
											Absorptions-K.
Incor	isis [.]	tent equ:	ivalents e	tc.							a
											Symmetrie
h	k	1	Fo^2 Sig	gma(Fo^2)	N Esd o	of mean(F	o^2)				Reziprokes Gitter
											FRIEDEL'sches Gesetz
-1	2	0 8	8818.58	6.07	9 167	.33					LAUE-Klassen
0	3	0 4	4758.56	3.83	9 121	.31					Auslöschungen
 -1	2	10	614.42	1.99 1	15 14	.95					Etwas Mathe
	49	Inconsis	stent equiv	valents							Strukturlösung
	109 Unique reflections of which 0 suppressed		PATTERSON-Methode								
		1		,	-						Direkte Methoden
R(int	;) =	0.0863	R(sigma	a) = 0.0227	7 Fr	iedel op	posites me	erged			CF-Methode

S.-Verfeinerung

Beispiel-Output (Programm SHELXL)

10. Einkristallstrukturbestimmung

											Datensammlung
Least-squar	es cycle	10 Ma	aximum vecto	or length =	511	Memory re	equired	l =	1163	/	$25057_{\rm Diffraktometer}$
	00 hoforo	avala 10	for 100	data and	A /	1 nomenat					Images
WR2 = 0.20	2 = 0.2099 before cycle 10 for 109 data and 4 / 4 parameters						Indizierung				
GooF = S =	1.967	; Resti	rained GooF	= 1.96	7 for	0 restr	aints				Meßstrategien
											Daten reduktion
ATOM	x	У	z	sof	U11	U22	U33	U23	U13	U12	Ueq Integration
Tn1	0 66667	0 22222	0.04521	0 16667	0 00005						LORENTZ-Korrektur
0 00189	0.00000	0.00000	0.00024	0.00000	0.02225						Polarisations-K.
0.00105	0.00000	0.00000	0.00024	0.00000	0.00100						Absorptions-K.
Sr1	0.00000	0.00000	0.25000	0.08330	0.02314						Symmetrie
0.00000	0.00000	0.00000	0.00000	0.00000	0.00115						Reziprokes Gitter
								FRIEDEL'sches Gesetz			
Final Structure Factor Calculation for SrIn P63/mmc							LAUE-Klassen				
Total numbe	r of l.s.	parameters	s = 4	Maximum v	ector leng	th = 511	Memo	ory r	equir	ed =	1159/20951gen
		•			, in the second s			•	•		Etwas Mathe
wR2 = 0.20	99 before	cycle 11	for 109	data and	0/	4 paramet	ers				
											Strukturlösung
R1 = 0.053	1 for	104 Fo > 4:	sig(Fo) and	1 0.0550 fo	rall 1	09 data					PATTERSON-Methode
											Direkte Methoden

CF-Methode

S.-Verfeinerung

Beispiel-Output (Programm SHELXL)

Bond ler	oths and angles								Datensammlung
In1 -	Distance	Angles							Diffraktometer
In1 \$4	2,9822 (0.0015)								Images
In1_\$6	2.9822 (0.0015)	114.24 (0.06)							Indizierung
In1_\$5	2.9822 (0.0015)	114.24 (0.06)	114.24 (0	.06)					Meßstrategien
In1_\$12	3.2898 (0.0041)	104.13 (0.07)	104.13 (0	.07) 104	.13 (0.07)				The second se
Sr1_\$13	3.3270 (0.0014)	72.50 (0.03)	72.50 (0	.03) 164	.50 (0.10)	60.37 (0	.03)		Datenreduktion
									Integration
									LORENTZ-Korrektur
Electror	n density synthesi	s with coeffici	ents Fo-Fc						Polarisations-K.
									Absorptions-K.
Highest	peak 1.25 at	0.6667 0.3333	0.1080	[0.50	A from IN1]			Symmetrie
Deepest	hole -3.81 at	0.6667 0.3333	0.0401	[0.04	A from IN1]			Symmetric
									Reziprokes Gitter
Mean =	-0.01, Rms dev	iation from mea	n = 0.4	9 e/A^3,	Highest	memory us	ed = 1227	7 /	9603DEL'sches Gesetz
									LAUE-Klassen
Fourier	peaks appended to	.res file							Auslöschungen
	х у	z soi	U	Peak	Distances	to neares	t atoms (i	inclu	uding symmetry equ Etwas Mathe
Q1 1	0.8009 0.6019	0.1047 0.500	000 0.05	0.79	1.26 IN1	2.08 SR1	2.79 IN1	3.0	04 INI Machie
Q2 1	0.5368 0.0735	0.1205 0.500	000 0.05	0.78	1.28 IN1	2.21 IN1	2.73 SR1	2.9	91 _{StIN1kturlösung}
Q3 1	0.5916 0.1832	0.1908 0.500	0.05 0.05	0.75	1.34 IN1	2.22 IN1	2.67 SR1	2.9	94 IN1 PATTERSON-Methode
\$									Direkte Methoden
									CF-Methode
									SVerfeinerung
									Ergebnisse

10. Einkristallstrukturbestimmung

Kristallographische Daten

- Gitterkonstanten, Raumgruppe
- Koordinaten aller Atome
- 'Temperaturfaktoren' (Schwingungs-Ellipsoide; Informationen über die Bewegung der Atome um ihre Gleichgewichtslage)
- ▶ Gütefaktoren für die Strukturbestimmung (*R*-Werte)

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- ${\rm Absorptions}\text{-}{\rm K}.$

$\mathbf{Symmetrie}$

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- ${\it Auslöschungen}$
- Etwas Mathe
- Strukturlösung
- PATTERSON-Methode
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung

- Kristallographische Daten
 - Gitterkonstanten, Raumgruppe
 - Koordinaten aller Atome
 - 'Temperaturfaktoren' (Schwingungs-Ellipsoide; Informationen über die Bewegung der Atome um ihre Gleichgewichtslage)
 - ▶ Gütefaktoren für die Strukturbestimmung (*R*-Werte)
- ▶ in Files mit diversen Formaten
 - SHELX (s.o., für die entsprechenden Programmsysteme als Input brauchbar)
 - CIF (Crystal Information File; Standard der IUCr, etwas kryptisch)
 - PDB (Protein Database, f
 ür die PDB-Datenbank)
 - ▶ FDAT (für die Cambridge Crystallographic Database, CCDC)
 - CRYSTIN (für die ICSD, Inorganic Crystal Structure Database)
 ...

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

$\mathbf{Symmetrie}$

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- ${\it Auslöschungen}$
- Etwas Mathe
- Strukturlösung PATTERSON-Methode
- CF-Methode
- S.-Verfeinerung

- Kristallographische Daten
 - Gitterkonstanten, Raumgruppe
 - Koordinaten aller Atome
 - 'Temperaturfaktoren' (Schwingungs-Ellipsoide; Informationen über die Bewegung der Atome um ihre Gleichgewichtslage)
 - ▶ Gütefaktoren für die Strukturbestimmung (*R*-Werte)
- ▶ in Files mit diversen Formaten
 - SHELX (s.o., für die entsprechenden Programmsysteme als Input brauchbar)
 - CIF (Crystal Information File; Standard der IUCr, etwas kryptisch)
 - PDB (Protein Database, f
 ür die PDB-Datenbank)
 - ▶ FDAT (für die Cambridge Crystallographic Database, CCDC)
 - CRYSTIN (für die ICSD, Inorganic Crystal Structure Database)
 ...

berechenbar hieraus:

- Koordinationszahlen
- Atomabstände
- Bindungswinkel
- Torsionswinkel
- Beste Ebenen
 - <u>.</u>.

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektui
- Polarisations-K.
- Absorptions-K.

Symmetrie

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen
- ${\it Auslöschungen}$
- Etwas Mathe
- Strukturlösung PATTERSON-Methode Direkte Methoden
- CF-Methode
- S.-Verfeinerung

- Kristallographische Daten
 - Gitterkonstanten, Raumgruppe
 - Koordinaten aller Atome
 - 'Temperaturfaktoren' (Schwingungs-Ellipsoide; Informationen über die Bewegung der Atome um ihre Gleichgewichtslage)
 - ▶ Gütefaktoren für die Strukturbestimmung (*R*-Werte)
- ▶ in Files mit diversen Formaten
 - SHELX (s.o., für die entsprechenden Programmsysteme als Input brauchbar)
 - CIF (Crystal Information File; Standard der IUCr, etwas kryptisch)
 - PDB (Protein Database, f
 ür die PDB-Datenbank)
 - ▶ FDAT (für die Cambridge Crystallographic Database, CCDC)
 - CRYSTIN (für die ICSD, Inorganic Crystal Structure Database)

berechenbar hieraus:

- Koordinationszahlen
- Atomabstände
- Bindungswinkel
- Torsionswinkel
- Beste Ebenen
- ▶ ...

div. Abbildungen der Molekül- bzw. der gesamten Kristallstrukturen

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- Polarisations-K.
- Absorptions-K.

Symmetrie

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen
- Etwas Mathe
- Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode
- S.-Verfeinerung

${\rm Ergebnisse}~{\rm II}$

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

Integration LORENTZ-Korrektur Polarisations-K. Absorptions-K.

Symmetrie

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung
- PATTERSON-Methode
- CF-Methode

S.-Verfeinerung

1 Datensammlung
2 Datenreduktion
3 Symmetrie im realen/reziproken Rau
④ Etwas Mathematik
5 Strukturlösung
6 Strukturverfeinerung
7 Ergebnisse

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

Symmetrie

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen
- Etwas Mathe
- Strukturlösung PATTERSON-Methode Direkte Methoden
- CF-Methode
- S.-Verfeinerung

▶ Literatur/Programme

- W. Massa: Einführung in die Kristallstrukturanalyse, Springer.
- G. H. Stout, L. H. Jensen: X-Ray Structure Determination, Wiley Inters.
- C. Giacovazzo (ed.), Fundamentals of Crystallography, IUCr, Oxford Science Publ.
- ▶ G. Phillips, University of Wisconsin, Madison: XRayView5.0
- G. Chapuis, Lausanne: DIFFRACTOGRAM
- R. B. Neder, Th. Proffen: DISCUS (momentan offline!)

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

Symmetrie

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen
- Etwas Mathe
- Strukturlösung PATTERSON-Methode
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

▶ Literatur/Programme

- W. Massa: Einführung in die Kristallstrukturanalyse, Springer.
- G. H. Stout, L. H. Jensen: X-Ray Structure Determination, Wiley Inters.
- C. Giacovazzo (ed.), Fundamentals of Crystallography, IUCr, Oxford Science Publ.
- ▶ G. Phillips, University of Wisconsin, Madison: XRayView5.0
- G. Chapuis, Lausanne: DIFFRACTOGRAM
- R. B. Neder, Th. Proffen: DISCUS (momentan offline!)

Programme

- Messungen und Datenreduktion: jeweils Hersteller-eigene Programme
- Struktur-Lösung/Verfeinerung: SHELX(S/L) (G. Sheldrick, Göttingen)
- alternativ z.B. JANA2020 (V. Petříček, M. Dušek, L. Palatinus, Prag)
- viele Auswertetools, Zeichenprogramme usw. (s.a. Links auf Web-Seite)

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

Integration LORENTZ-Korrektur Polarisations-K. Absorptions-K.

Symmetrie

- Reziprokes Gitter FREDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung PATTERSON-Methode Direkte Methoden
- CF-Methode
- S.-Verfeinerung
- Ergebnisse

▶ Literatur/Programme

- ▶ W. Massa: Einführung in die Kristallstrukturanalyse, Springer.
- G. H. Stout, L. H. Jensen: X-Ray Structure Determination, Wiley Inters.
- C. Giacovazzo (ed.), Fundamentals of Crystallography, IUCr, Oxford Science Publ.
- G. Phillips, University of Wisconsin, Madison: XRayView5.0
- G. Chapuis, Lausanne: DIFFRACTOGRAM
- R. B. Neder, Th. Proffen: DISCUS (momentan offline!)

Programme

- Messungen und Datenreduktion: jeweils Hersteller-eigene Programme
- Struktur-Lösung/Verfeinerung: SHELX(S/L) (G. Sheldrick, Göttingen)
- alternativ z.B. JANA2020 (V. Petříček, M. Dušek, L. Palatinus, Prag)
- viele Auswertetools, Zeichenprogramme usw. (s.a. Links auf Web-Seite)

Datenbanken

- ICSD (Inorganic Crystal Structure Database) (AC, im Uni-Netz)
- Pearson's Crystal Data (AC, nur PC in der Bibl.)
- CSD (Cambridge Crystallographic Database) (Organik, Metallorganik) (Uni-Netz)
- PDB (Protein Database) (frei)

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

Integration LORENTZ-Korrektur Polarisations-K. Absorptions-K.

Symmetrie

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe
- Strukturlösung PATTERSON-Methode Direkte Methoden CF-Methode

S.-Verfeinerung

10. Einkristallstrukturbestimmung

Datensammlung

- Diffraktometer
- Images
- Indizierung
- Meßstrategien

Datenreduktion

- Integration
- LORENTZ-Korrektur
- Polarisations-K.
- Absorptions-K.

Symmetrie

- Reziprokes Gitter FRIEDEL'sches Gesetz LAUE-Klassen Auslöschungen Etwas Mathe Strukturlösung PATTERSON-Methode
- Direkte Methoden
- $\operatorname{CF-Methode}$
- S.-Verfeinerung
- Ergebnisse

DANKE

M. Ade, C. Röhr