
Lanthanoide – Seltene Erden

4. Halogenide

Vorlesung WS 2021/2022

Inhaltsübersicht (gesamte Vorlesung)

- 1. Einleitung 🗸
- 2. Atomare physikalische Eigenschaften 🗸
- 3. Chemische Eigenschaften ✓
- 4. Halogenide

 →
 - **4.1.** Kriterien für die praktische Anwendung von *Ln*-Verbindungen
 - **4.2.** Trihalogenide LnX_3 (+III)
 - **4.3.** Ternären Ln(III)-Halogenide
 - **4.4.** Tetrafluoride LnF_4 (+IV)
 - **4.5.** Dihalogenide LnX_2 (+II)
- 5. Oxide, Oxidhalogenide und Sulfide
- 6. Lumineszenz-Materialien
- 7. Weitere praktisch wichtige Salze mit Oxido-Anionen
- 8. Metalle und Legierungen
- 9. Komplexe
- 10. Weitere anwendungsrelevante Verbindungen

- lacktriangen Kriterien für die praktische Anwendungen von Ln-Verbindungen
- 2 Trihalogenide LnX_3
- 4 Tetrafluoride LnF_4 (+IV)
- **6** Dihalogenide LnX_2 (+II)

Allgemeine Kriterien für Anwendungen von Ln-Verbindungen

- Halogenide
 - ▶ keine Massenanwendungen
 - Fluoride!
 - übrige Halogenide meist hydrolyseempfindlich
 - ▶ einige Fluoride für speziellere (magneto)optische Anwendungen
 - Ln-dotierte YF $_3$ -basierende Materialien für Quanten-Cutter/Up-conversion etc.
 - magneto-optische Kristalle und Gläser
 - FZ: Fluorozirkonat-Gläser (HMFG) (z.B. für Laser)
- \bullet generelle Kriterien für Anwendung von $\mathit{Ln} ext{-}$ Verbindungen
 - ▶ physikalische Eigenschaften
 - Schmelzpunkte, Schmelzverhalten (kongruent/inkongruent)
 - Härte (Schwingungsaufspaltung der elektronischen Niveaus)
 - Wellenlängen-abhängige Transparenz, Farben
 - magnetische Ordnung
 - ▶ chemische Eigenschaften
 - Stabilität gegen Luft und Wasser
 - Synthesen, auch in definierten Formen:
 - polykristalline Pulver, Keramiken, Einkristalle
 - Gläser, dünne Schichten, nanopartikuläre Pulver etc.
 - ▶ Preis/Verfügbarkeit
 - 'inerte' Wirte für optische Anwendungen mit Ln = Y, La, Ce, Gd

Kristallchemische Kriterien für optische Anwendungen

- \blacktriangleright Ln-Substitutionsmöglichkeiten auf bestimmten kristallographischen Positionen
 - auch Ko-Dotierungen!
- \blacktriangleright Punktsymmetrie der $Ln\text{-Lage}\mapsto \text{Auswahlregeln}$ für optische Übergänge (g/u)
- ► Art der Liganden X (vgl. Orgel- bzw. Tanabe-Sugano-Diagramme)
 - Δ : LF-Aufspaltung der 5*d*-Niveaus \mapsto spektrochemischen Reihe
 - B: nephelauxetischer Effekt (optische Elektronegativität)
 - \mapsto Abnahme des Racah-Parameters B in der Reihe

$${\rm F^->H_2O>NH_3>en>NCS^->Cl^->CN^->Br^->l^-}$$

- daher für $X = F^-$: kleine Aufspaltung der 5d-Niveaus
 - $\mapsto 5d$ bleiben energetisch über $f \to f\text{-}\ddot{\text{U}}$ bergängen
 - \mapsto wichtig für Laser, 'Up/Down-conversion'-Leuchtstoffe, Quanten-'Cutter'
- ightharpoonup Verknüpfung der $[LnX_n]$ -KKPs
 - Abstände Ln-Ln
 - Brücken-Winkel Ln-X-Ln
 - Zahl benachbarter *Ln*-Positionen (Perkolationsschwellen für Dotierungen)

- Kriterien für die praktische Anwendungen von *Ln*-Verbindungen
- 2 Trihalogenide LnX_3
- 3 Ternäre Ln(III)-Halogenide
- \bullet Tetrafluoride LnF_4 (+IV)
- **5** Dihalogenide LnX_2 (+II)

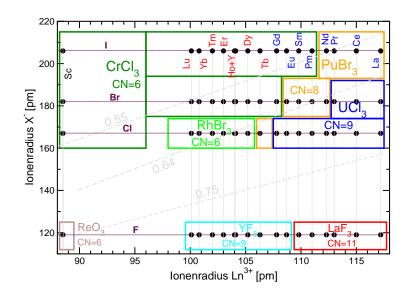
Trihalogenide LnX_3

- ightharpoonup für alle Ln inkl. Sc und Y bekannt
- ▶ Fluoride schwerlöslich
- ▶ Chloride, Bromide und Iodide hygroskopisch
- \blacktriangleright Schmelzpunkte: 1552 (ScF $_3)$ bis 780 °C (LaI $_3)$
- ► Herstellung

alle: aus den Elementen

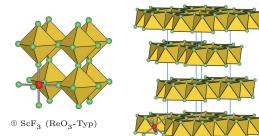
$$F^-\colon \quad \bullet \quad Ln\mathrm{Cl}_3 + 3\mathrm{HF}_{\mathrm{aq}} \xrightarrow[\mathrm{Pt-Tiegel}]{} Ln\mathrm{F}_3 \cdot n\mathrm{H}_2\mathrm{O} + 3\mathrm{HCl}$$

•
$$LnF_3 \cdot nH_2O \xrightarrow{600^{\circ}C} LnF_3 + nH_2O$$


Cl⁻/Br⁻: •
$$Ln_2O_3 + 12NH_4X \xrightarrow{100^{\circ}C} 2(NH_4)_3LnX_6 \cdot nH_2O$$

$$\bullet \ \ (\mathrm{NH_4})_3 Ln X_6 \cdot n\mathrm{H_2O} \xrightarrow{1.\ 120^{\circ}\,\mathrm{C}} Ln X_3 + n\mathrm{H_2O} + 3\mathrm{NH_4}X$$

$$\text{I}^{-} \colon \quad \bullet \ \ 2Ln + 3\text{HgI}_2 \xrightarrow[\text{Glas-Ampulle}]{300\,^{\circ}\,\text{C}} 2Ln\text{I}_3 + 3\text{Hg}$$


- \blacktriangleright Farben: reine $f\to f\text{-} \ddot{\text{U}}\text{berg\"{a}nge}$ (s. Kap. 2)
- ▶ 7 verschiedene Strukturtypen (① ⑦)
- ▶ abhängig vom Radienverhältnis (1. Pauling-Regel) \rightarrow Strukturfeld \Downarrow

Strukturfeld für die Ln-Trihalogenide

Strukturen der Ln-Trihalogenide I: CN(Ln)=6

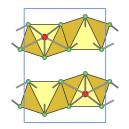
- \blacktriangleright Niggli-Formel: $LnX_{6/2}$ (verknüpfte Oktaeder als KKPs)
- ▶ Vorkommen: bei relativ zu Ln^{3+} grossen X^{-}
- ▶ drei Strukturtypen:
- ① ReO₃: Raumnetz eckverknüpfter Oktaeder, lineare Ln-X-Ln-Brücke
 - nur ScF₃ (NTE*-Material, bis 10 K kubisch; > 0.5 GPa \mapsto VF₃-Typ)
- ▶ ② CrCl₂ und ③ RhBr₂: Schichten kantenverknüpfter Oktaeder
 - ② CrCl₃: Iodide: Pm Lu; Bromide: Gd Lu; Chloride: nur ScCl₃
 - 3 RhBr₃: Chloride von Dy bis Lu
 - nur schwere Halogenide \mapsto keine Anwendung

3 RhBr₃-Typ

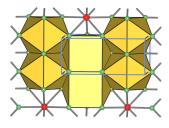
 ← ② CrCl₂-Typ

* Negative Thermal Expansion (von 10 bis 1100 K)

Caroline Röhr


Strukturen der Ln-Trihalogenide II: CN(Ln)=8

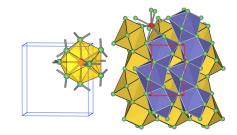
- ▶ KKPs: 2-fach überkappte trigonale Prismen
- ▶ Niggli-Formel: $LnX_{2/2}X_{6/3}$
- ightharpoonup Vorkommen: bei mittleren Radienverhältnissen X zu Ln^{3+}


I⁻: La - Nd Br⁻: Nd - Eu

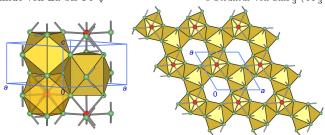
Cl⁻: Tb

- ► Struktur: PuBr₃−Typ ④ (RG Cmcm)
 - \bullet Schichten aus KKPs, X verknüpfen 2 bzw. 3 KKPs, auch Flächenverknüpfung

Projektion der Struktur von LaI_3



Aufsicht auf eine Schicht; VRML


Anwendungen: keine, da nur für schwere X^- bekannt

Strukturen der Ln-Trihalogenide III: CN(Ln)=9

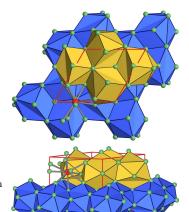
- \blacktriangleright Niggli-Formel: $LnX_{9/3}$
- KKP: dreifach überkapptes trigonales
 Prisma
- ▶ Vorkommen: grosse Ln^{3+} relativ zu X^{-}
- ▶ zwei Strukturtypen:
 - \circ YF₃: Fluoride von La bis Sm \Longrightarrow
 - © UCl₃: Chloride von La bis Gd, Bromide von La bis Pr ↓

 $\mbox{\@ }$ Struktur von \mbox{SmF}_3 (YF $_3\mbox{-Typ},\ Pnma)$

© Struktur von LaCl₃ (UCl₃-Typ, P6₃/m, VRML)

Strukturen der Ln-Trihalogenide III: CN(Ln)=9 (Forts.)

- - ► YF₃
 - wichtiges, günstiges Wirtsmaterial
 - z.B. Pr³⁺-dotiert →
 Quanten-'Cutter' für
 energie-effiziente Beleuchtung mit
 Xe-Plasma-Lampen (Anregung im
 VUV 148/172 nm)
 - ▶ $(Gd/Y)F_3:Yb^{3+},Er^{3+}$
 - Up-conversion-Material (IR \longrightarrow grün)


- $\ \, \mbox{ \ \ \, } \mbox{ \ \ \ } \mbox{ \ \ \ \ } \mbox{ \ \ }$
 - \blacktriangleright hexagonale Kanäle \mapsto diverse aufgefüllte Varianten
 - ▶ z.B. Pr_{0.3}[PrCl₃]

4□ > 4回 > 4 = > 4 = > = 990

12 / 22

Strukturen der Ln-Trihalogenide IV: CN(Ln)=11

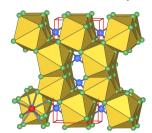
- ► KKP: allseits überkapptes trigonales Prisma (1:3:3:3:1)
- \blacktriangleright Niggli-Formel: $LnX(1)_{8/4}X(2)_{2/3}X(3)_{1/3}$
- ightharpoonup Vorkommen: sehr grosse Ln^{3+} relativ zu X^{-}
- ▶ Struktur: LaF₃-Typ $⑦ (P\bar{3}c1)$
- ▶ Fluoride von La bis Sm
- ► Strukturbeschreibung:
 - h.c.p. der N Ln-Kationen
 - 2N F in allen TL (X(1), verknüpfen 4 KKPs)
 - N F⁻ in allen OL (X(1), verschoben, verknüpfen nur 3 KKPs)
- ► Anwendungen von LaF₃
 - Bestandteil von UV-transparenten Gläsern (s.u.)
 - Antireflexions-Beschichtungen

Struktur von LaF₃, VRML

- lacktriangen Kriterien für die praktische Anwendungen von Ln-Verbindungen
- 2 Trihalogenide LnX_3
- 3 Ternäre Ln(III)-Halogenide
- \bullet Tetrafluoride LnF_4 (+IV)
- **6** Dihalogenide LnX_2 (+II)

Ternäre Alkali/Erdalkalimetall-Ln(III)-Halogenide

- Alkalimetall-Verbindungen
 - gegenüber reinen Halogeniden verringerter Kondensationsgrad der KKPs → höhere Dotierungsgrade möglich
 - ► Zusammensetzungen (fallender Kondensationsgrad der *Ln*-KKPs)
 - 3.3 $A^{\rm I} L n_2 X_{10} \; (\Rightarrow)$
 - $3.5 A^{\rm I} L n_2 X_7$ (4 verschiedene Strukturtypen)
 - $4 A^{\mathrm{I}} L n X_{\Lambda} (\Rightarrow)$
 - $4.5 A_2^{\mathrm{I}} L n_2 X_0$
 - $5 A_2^{\text{I}} Ln X_5$
 - $6 A_2^{\text{I}} Ln X_e$
 - ▶ einige der Fluoride für Leuchtstoff/Laser-Anwendungen
- Erdalkalimetall-Verbindungen
 - ► Zusammensetzungen (fallender Kondensationsgrad der *Ln*-KKPs)
 - $5 A^{II}LnX_{5}$
 - $7 A_2^{II} Ln X_7$


 - 9 $A_3^{\text{fI}} Ln X_9$ 11 $A_4^{\text{II}} Ln X_{11}$

Details s. Kap. 2.1. (M. Wickleder) in R. Pöttgen, Th. Jüstel, C. A. Strassert (Eds.): Rare Earth Chemistry, DeGruyter, (2020). 4 □ > 4 □ > 4 □ > 4 □ >

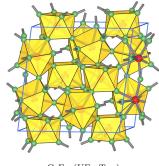
Caroline Röhr 4. Halogenide 15 / 22

praktisch wichtige Beispiele


- \bullet $ALnF_4$
 - ightharpoonup Na[YF₄]
 - geordneter Fluorit-Typ
 - Wirt für Up-Conversion-Materialien
 - ► Li[GdF₄]:Eu³⁺
 - Quanten-'Cutter' durch 'Down-Conversion'
 - anti-Scheelit-Struktur \Downarrow

LiGdF₄: anti-Scheelit-Typ

• ALn_3F_{10}


- ► KTb₃F₁₀ (KTF)
 - magneto-optisches Material
 - FARADAY-Effekt (VERDET-Konstante $\beta=36$ °/Tm)
 - Einkristalle
 - kubische Struktur, $Fm\bar{3}m \downarrow$

- lacktriangen Kriterien für die praktische Anwendungen von Ln-Verbindungen
- \odot Trihalogenide LnX_3
- **4** Tetrafluoride LnF_4 (+IV)
- **6** Dihalogenide LnX_2 (+II)

Tetrafluoride LnF_4

- LnF_{4}
 - ightharpoonup nur CeF₄, PrF₄ und TbF₄
 - starke Oxidationsmittel
 - Struktur: UF₄-Typ ↓

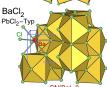
 CeF_4 (UF₄-Typ)

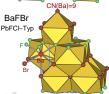
• FZ: Fluorozirkonat-Gläser

- ▶ sog. HMFG (Heavy metal fluoride glass)
- ▶ typische Zusammensetzung (ZBLAN)
 - $57 \% \text{ ZrF}_{4} \text{ (Netzwerkbildner, UF}_{4}\text{-Typ)}$
 - 18 % BaF₂
 - 17 % NaF
 - 3 % LaF₃
 - 4 % AlF₃
- ▶ transparent von UV bis IR
- ▶ für Laser und Glasfasern:
 - ZBLAN auf Wikipedia
 - Glasfasern

- lacktriangen Kriterien für die praktische Anwendungen von Ln-Verbindungen
- \odot Trihalogenide LnX_3
- \bullet Tetrafluoride LnF_4 (+IV)
- **6** Dihalogenide LnX_2 (+II)

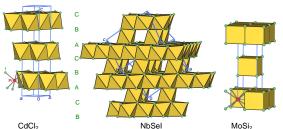

Caroline Röhr

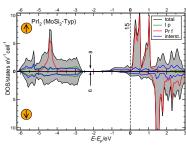

Dihalogenide LnX_2 (+II)


- \blacktriangleright Herst.: Reduktion der Trihalogenide mit ${\rm H_2}$ oder Ln
- zwei Verbindungsklassen:
- \bullet einfache Salze mit Ln(+II)-Ionen
 - für Eu, Yb, Nd, Sm, Dy und Tm
 - isotyp zu Erdalkalimetall-Halogeniden (s. AC-II)

V I			9 (
	Be	Mg	Ca	Sr	Ba
F	Quarz (4)	Rutil (6)	CaF_2 (8)	CaF ₂ (8)	CaF_2 (8)
			Rutil (verz., 6)		$PbC\overline{l}_{2}$ (9)
$_{\mathrm{Br}}$	$SiS_2^{-}(4)$	CdI ₂ (6)	Rutil (verz., 6)	PbCl ₂ (9)	$PbCl_2^{-}$ (9)
Ι		CdI_2 (6)	CdI_2 (6)	$SrI_2(7)$	$PbCl_2(9)$
1 1	D				

- d.h. z.B.
 - SmF_2 analog CaF_2 , SrF_2 und $\mathrm{BaF}_2 \mapsto \mathrm{Fluorit}\text{-Typ}$
 - TmI_2 analog $MgCl_2 \mapsto CdCl_2$ -Typ
 - $TbBr_2 \mapsto SrI_2$ -Typ
 - $SmCl_2 \rightarrow PbCl_2$ -Typ
- \bullet günstig für Dotierung der $A^{\rm II}\text{-Fluoride}$ mit Ln^{2+}
- z.B.: BaFBr:Eu²⁺ (Szintillator-Material) \mapsto PbFCl-Typ
- $\bullet\,$ reine LnX_2 ohne technische/praktische Bedeutung
- 2 metallische Verbindungen





Dihalogenide LnX_2 , Subhalogenide ? (Forts.)

- \bullet einfache Salze mit Ln(+II)-Ionen
- 2 metallische Verbindungen
 - Iodide wie z.B. CeI_2 , PrI_2 und GdI_2
 - metallischer Glanz, metallische Leitfähigkeit: $Ln\mathbf{I}_2 \longrightarrow Ln^{3+} + 2\mathbf{I}^- + \mathbf{e}^-$
 - für Salze ungewöhnliche Strukturen (MoS₂, MoSi₂, NbSeI)
 - 3 der 5 Polymorphe von $\mathrm{PrI}_2 \Downarrow$

berechnete DOS von $\mathrm{PrI}_2~(\mathrm{MoSi}_2\text{-Typ})$

!!! alle als Ln-'Subhalogenide' beschriebenen Verbindungen enthalten Nichtmetall-Atome (z.B. Carbid, Hydrid) in den Clusterzentren (z.B. $\mathrm{Gd}_5\mathrm{Cl}_9=\mathrm{Gd}_{10}\mathrm{Cl}_{18}(\mathrm{C}_2)_2)$

Inhaltsübersicht (gesamte Vorlesung)

- 1. Einleitung 🗸
- 2. Atomare physikalische Eigenschaften 🗸
- 3. Chemische Eigenschaften ✓
- 4. Halogenide 🗸
 - **4.1.** Kriterien für die praktische Anwendung von *Ln*-Verbindungen
 - **4.2.** Trihalogenide LnX_3 (+III)
 - **4.3.** Ternären Ln(III)-Halogenide
 - **4.4.** Tetrafluoride LnF_4 (+IV)
 - **4.5.** Dihalogenide LnX_2 (+II)
- 5. Oxide, Oxidhalogenide und Sulfide
- 6. Lumineszenz-Materialien
- 7. Weitere praktisch wichtige Salze mit Oxido-Anionen
- 8. Metalle und Legierungen
- 9. Komplexe
- 10. Weitere anwendungsrelevante Verbindungen