$3.1.~{\rm KCl}~({\rm Feststoff prozessierung~ohne~Stoff umwandlung})$

3. Salze

http://ruby.chemie.uni-freiburg.de/Vorlesung/Seminare/kcl_tac.pdf

Caroline Röhr, Burkhard Butschke

Vorlesung: Technische Anorganische Chemie, WS 24/25

Inhalt (Prozess- und Stoff-Auswahl)

- Einleitung
- @ Gase
 - \bullet Edelgase, N $_2$, O $_2$ (Luftzerlegung, Rektifikation) \checkmark
 - Ammoniak (inkl. Wasserstoff; Gasreaktion)
- 3 Salze
 - KCl (Feststoffprozessierung ohne Stoffumwandlung) 🔿
 - Na₂CO₃ (reziproke Umsetzung)
 - Phosphate (Neutralisations- und Verdrängungsreaktionen)
 Chlorate und Perchlorate (elektrochemische Oxidation)
- Säuren
 - Schwefelsäure (über Gasreaktionen)
 - Essigsäure (homogene Katalyse) 🗸
 - Phosphorsäure (durch Verdrängungsreaktionen)
 - Salpetersäure
- 5 Basen
 - Chloralkali-Elektrolyse
- 6 Metalle
 - Eisen, Stahl
 - Kupfer
 - Aluminium
- 7 Weitere Anorganische Grund- und Wertstoffe
 - Zementklinker, Gläser, Düngemittel, Hochtemperaturwerkstoffe, Explosivstoffe,

- Einleitung
- 2 A: Trennung durch Löse- und Kristallisationsprozesse
- 3 B: Trennung durch Flotation
- 4 C: Elektrostatische Trennung
- 6 D: Schweretrennung
- 6 Zusammenfassung, Literatur

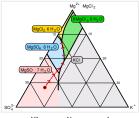
- Einleitung
- ② A: Trennung durch Löse- und Kristallisationsprozesse
- 3 B: Trennung durch Flotation
- 4 C: Elektrostatische Trennung
- 6 D: Schweretrennung
- 6 Zusammenfassung, Literatur

KCl: Bedeutung, Produktion und Verwendung

- ► Verwendung
 - direkt als Düngemittel (insgesamt 95 % von K_2O für Düngemittel)
 - Herstellung von K₂SO₄, KNO₃, KClO₃, K₂CO₃, KOH (gegenüber Na⁺-Salzen <u>nicht</u> H₂O-haltig/hygroskopisch)
 - für Elektrolyte, z.B. bei Chloralkali-Elektrolyse
 - Herstellung von elementarem Kalium (für K₂O, K-Graphit, Na/K)
- ► Preis: 383 €/t KCl (2023)
- ▶ Produktion und Reserven (nach Ländern, Stand 2023)

Land	Produktion [$10^3 \text{ t K}_2\text{O}$]
Kanada	14 600 (40 % Welt)
Russland	6 500
Belarus	3 800 (2021: 6 400)
China	6 000
Deutschland	$2~600~(\leftarrow K+S~8~\% Welt)$
Israel	2 400
Welt	37 100

Reserven (in [%]


Rohstoffe, Lagerstätten, Abbau des Rohsalzes: • Gewässer (?)

▶ hohe Salz-Geh.: totes Meer, Great Salt Lake (Utah), Lake McLeod (Australien)

Gewässer	Salzgehalt in mol/1000 mol H ₂ O				
	2 NaCl	2 KCl	MgCl_2	$MgSO_4$	$CaCl_2$
Ozean	4.22	0.09	0.61	0.35	-
Great Salt Lake (Utah, USA)	43	2.1	6.3	5.7	-
Kara-Bogas (Turkmenistan)	28.6	1.6	18.5	18.1	-
Mittelmeer	4.82	0.11	0.76	0.39	-
Totes Meer	16.08	2.29	25.66	-	7.84

- ► Gewinnung in 'Salzgärten' (s. 'Brine Mining')
 - in wärmeren Ländern Eindunstung von Meerwasser
 - für K-Salze nur mit Einschränkung nutzbar (geringe K-Gehalte)
- ➤ Ausscheidungsfolge nach 'Sonnendiagramm' (alle Meere, außer Totes Meer)
 - ① $MgSO_4 \cdot 7H_2O$ (Bittersalz)
 - ② Umwandlung zu MgSO $_4\cdot 6H_2O$
 - 3 zusätzliche Ausscheidung von KCl

 - ⑤ Ausscheidung von MgCl₂ · 6H₂O

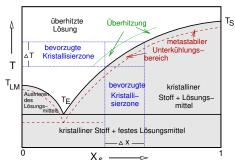
'Sonnendiagramm' (25 °C, NaCl gesättigt, kein GG-Diagra

Rohstoffe, Lagerstätten, Abbau des Rohsalzes: 2 Kalisalz-Lagerstätten

- ► K-Gehalte bis 30 %
- ▶ Bildung in verschiedenen Erdzeiten durch Eindunstung von Meeren
- ▶ Lager mit unterschiedlicher NaCl/KCl-Schichtung:
 - T-Abhängigkeit der L_p von NaCl/KCl
 - meist KCl oben, da NaCl > 25 °C etwas schwerer löslich
- Abbau unter Tage (Buggingen, historisch, 5 grösste Minen, aktuell)
- ▶ vier Rohsalztypen:

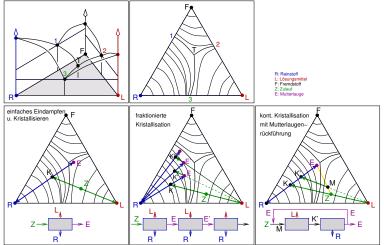
Rohsalz	KCl [%]	Hauptbestandteile
Sylvinit	20-35	Sylvin (KCl), Steinsalz (NaCl)
Hartsalz (kieseritisch)	15-30	Sylvin, Steinsalz, Kieserit (MgSO ₄ · H ₂ O)
Hartsalz (anhydritisch)	15-30	Sylvin, Steinsalz, Anhydrit (CaSO ₄)
Carnallitit	13-24	Carnallit ($KMgCl_3 \cdot 6H_2O$), Steinsalz, Kieserit

- ightharpoonup Trennungproblem: NaCl (Steinsalz) KCl (Sylvin)
- ► Beiprodukte:
 - Mg-Sulfat (Mg-Düngemittel), K2SO4 und Na2SO4
 - Bromide
 - MgCl₂-Lösungen (Magnesia, Sorelzement, elementares Mg)
- ► Förderung:
 - i.A. Schachtbau (bis ca. 1200 m Tiefe)
 - selten durch Aussolung

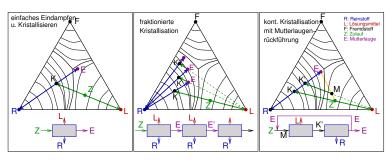

Übersicht: Trennverfahren

- ▶ Abtrennung von anderen Salzen (hauptsächlich NaCl, auch Mg-Salze)
- ▶ je nach Rohstoff vier verschiedene Verfahren in Gebrauch:
 - A Löse- und Kristallisations-Verfahren
 - B Flotation (für ca. 40 % des KCl)
 - C elektrostatische Aufbereitung (umweltfreundliches, heute wichtigstes Verfahren)
 - D Schweretrennung (NaCl/KCl) (geringe Bedeutung, da nur geringe Dichteunterschiede)
- ▶ Verfahren z.T. auch miteinander kombiniert
- hier im Detail zu den ersten drei Verfahren
- \blacktriangleright grundlegende Verfahrensprinzipien von Feststoff/Mineral-Trennungen: Kristallisation, Flotation

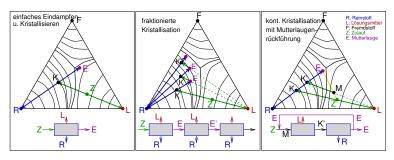
- Einleitung
- 2 A: Trennung durch Löse- und Kristallisationsprozesse
- 3 B: Trennung durch Flotation
- 4 C: Elektrostatische Trennung
- 6 D: Schweretrennung
- 6 Zusammenfassung, Literatur


PC: Kristallisation im Zweikomponenten-System

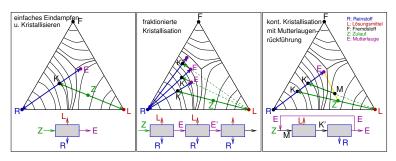
- ▶ Physikalisch-chemische Grundlagen (binäre Systeme)
- ightharpoonup T x-Phasendiagramm \Rightarrow
- ▶ ideales System (ohne Randlöslichkeit)
- Lösungs- analog Schmelzdiagrammen (Raumtemperatur!)
- ► Keimbildung (im Ostwald-Miers-Bereich übersättigte Lösung)
- ► Kristallisation möglich
 - durch Kühlung ↓
 - oder Verdampfung \rightarrow


Kristallisation als Trennverfahren: ternäre Systeme

- Kristallisation als Trennverfahren
- ightharpoonup Hdeal-Fall: einfach eutektisches ternäres Phasendiagramm

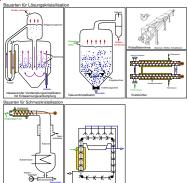

▶ im PD: Varianten für Verdampfungskristallisation

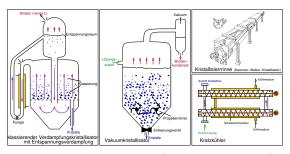
Verdampfungskristallisation


- ① einfaches Eindampfen:
 - ▶ Zulauf Z bis K eindampfen (F/R konstant, Gerade zu L)
 - ightharpoonup bei K \mapsto Ausscheidung von R
 - ▶ Mengen (in kg) aus Hebelgesetz: $\frac{L}{K} = \frac{Z\bar{K}}{ZL}$ bzw. $\frac{R}{E} = \frac{\bar{K}E}{KR}$
- 2 fraktionierte Kristallisation:
- ③ kontinuierliche Kristallisation mit Mutterlaugenrückführung:

Verdampfungskristallisation

- ① einfaches Eindampfen:
- 2 fraktionierte Kristallisation:
 - ▶ abwechselndes Eindampfen und Abkühlen
 - ▶ immer wieder kleinere Menge von R die ausfallen
 - ► Z→K: Verdampfen
 - ► K→E: Kristallisation von R (durch Abkühlung)
 - ► E→K': Verdampfen von Mutterlauge
- 3 kontinuierliche Kristallisation mit Mutterlaugenrückführung:

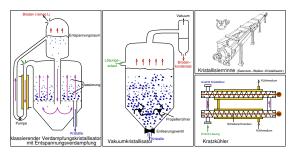

Verdampfungskristallisation


- ① einfaches Eindampfen:
- 2 fraktionierte Kristallisation:
- 3 kontinuierliche Kristallisation mit Mutterlaugenrückführung:
 - ► Zulauf Z, Eindunsten bis K
 - ightharpoonup Kristallisation von reinem $R \mapsto L\ddot{o}sung E$
 - ► Kreislauf: E mit Z mischen bis M
 - ▶ im Folgenden: Kreislauf $M \rightarrow K' \rightarrow E$

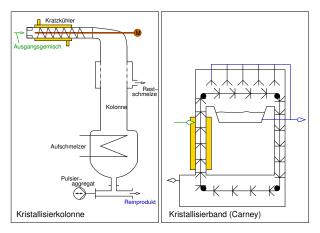
Apparte für technische Kristallisationen (allgemein)

- ► Anforderungen an Kristallisatoren
 - guter Stoffaustausch durch Relativbewegung Kristall-Mutterlauge
 - Steuerung der Übersättigung (meist möglichst hoch gewünscht)
 - Anwendung von Impfkristallen
 - Klassierung
 - ausreichende Heiz- und Kühlflächen
- ▶ Bauarten für Lösungs- bzw. Schmelzkristallisationen

Apparte I: Lösungskristallisation


- ① klassierender Verdampfungskristallisator (OSLO-Kristallisator)
 - Lsg. bis kurz unter Siedepunkt erhitzen (Wärmetauscher)
 - Lsg. steigt im Steigrohr nach oben und siedet im Entspannungsraum
 - ▶ übersättigte Lösung strömt durch Fallrohr und Kristallgemenge
 - ightharpoonup Klassierung, große Kristalle werden unten ausgetragen; kleine leichte wirken oben als Impfkristalle
 - ▶ auch in Serienschaltungen (Brüden zum Heizen des nächsten Kristallisators)
 - ▶ Vorteil: Korngröße durch Zulaufmenge einstellbar
- ② Vakuumkristallisator
- 3 Kühlungskristallisatoren, z.B. Swenson-Walker-Kristallisierrinne

Apparte I: Lösungskristallisation


- ① klassierender Verdampfungskristallisator (OSLO-Kristallisator)
- ② Vakuumkristallisator
 - ▶ einfachster kontinuierlicher Kristallisator
 - ► Abkühlung durch Verdampfung im Vakuum
 - ▶ weitere Bauarten
 - Forced Circulation (FC), kleine Kristalle <3 mm
 - Draft-Tube Baffled (DTB), grobe Kristalle mit enger Größenverteilung
 - s. www.gea.com
- ③ Kühlungskristallisatoren, z.B. Swenson-Walker-Kristallisierrinne

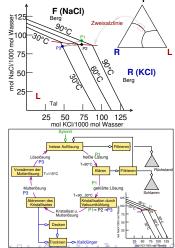
Apparte I: Lösungskristallisation

- @ klassierender Verdampfungskristallisator (Oslo-Kristallisator)
- ② Vakuumkristallisator
- ③ Kühlungskristallisatoren, z.B. Swenson-Walker-Kristallisierrinne
 - ▶ Rinne, von außen mit Wasser gekühlt
 - ▶ Spiralrührer entfernt Krusten von Wand (Kühlflächen)

Apparte II: Schmelzkristallisation

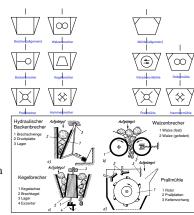
- \diamond Trennung fester organischer Stoffe
- ① Kristallisierkolonne mit Rücklauf
 - s. www.gea.com
- 2 Carney-Kristallisierband

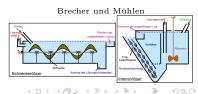
Prozessierung von KCl: 'Hot leaching'


- ▶ nur einfachster Fall: Sylvinit = KCl–NaCl-Trennung
- ▶ real: je nach Rohstoff deutlich komplexere Verfahren

► Gleichgewichte und Verfahrensprinzip

- links unten: Lsg. (niedrige Salzkonzentrationen)
- oben rechts: Kristalle
- \bullet polytherme Verbindung der Zweisalzpunkte \parallel zur KCl-Achse
- Lp(KCl): schwache T-Abhängigkeit
- \bullet Lp(NaCl): große T-Abhängigkeit


▶ Prinzip der NaCl–KCl-Trennung


- Lsg. P3 auf 115 °C erhitzen
- diese Lsg. auf Rohsalz aufgeben \mapsto Mischungstemperatur 90 °C
- Verhältnisse so, dass Lösung P1 entsteht
- Klären (Entfernen andere Salze)
- Abkühlung der Lsg.: $P1 \rightarrow P2 \rightarrow P3$
- von P2 nach P3 kristallisiert praktisch reines KCl

Prozess-Schritte und zusätzliche Apparate

- ① Aufbereitung des Rohsalzes in Brechern und Mühlen
- ② Auflösung in Schneckenlösern
- ③ Klärung: von Ton, Anhydrid und NaCl
- Filtration auf Scheibenfiltern
- S Abkühlung und Kristallisation in mehrstufigen Vakuumkühlanlagen (s.o.)
- © meist vor der Trockung sog. Deckprozesse: Rest-NaCl mit kaltem Wasser herauslösen (T < 25 °C: NaCl leichter löslich als KCl)
- Trocknung in Trommeltrocknern

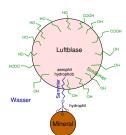
- Einleitung
- 2 A: Trennung durch Löse- und Kristallisationsprozesse
- 3 B: Trennung durch Flotation
- C: Elektrostatische Trennung
- 6 D: Schweretrennung
- 6 Zusammenfassung, Literatur

Allgemeines zur Flotation

Prinzip

- Ausschwimmen selektiv hydrophobierter Minerale aus einer Trübe
- zunehmend wichtiges Verfahren zur s-s-Trennung (Feinund Feinstkornsortierung)
- z.B. NaCl–KCl; sulfidische Erze (z.B. bei Cu-Gewinnug)

► Teilprozesse


- Sammleradsorption (durch Regler modifizierbar)
- Haften der hydrophobierten Körner auf Gasblasen
- Aufschwimmen beladener Gasblasen, Schaumbildung

► Sammler

- \bullet längere Kohlenwasserstoffreste (C $_{16}\text{-}\mathrm{C}_{18})$ mit polarer Gruppe
- Adsorption der polaren Gruppe am Mineral (Gitterkonstanten und KW-Rest müssen passen)
- wichtige Sammler ↓

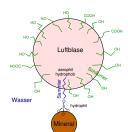
Schäumer

► Regler: Beleber oder Drücker

Allgemeines zur Flotation

Prinzip

- Ausschwimmen selektiv hydrophobierter Minerale aus einer Trübe
- zunehmend wichtiges Verfahren zur s-s-Trennung (Feinund Feinstkornsortierung)
- z.B. NaCl–KCl; sulfidische Erze (z.B. bei Cu-Gewinnug)


► Teilprozesse

- Sammleradsorption (durch Regler modifizierbar)
- Haften der hydrophobierten Körner auf Gasblasen
- Aufschwimmen beladener Gasblasen, Schaumbildung

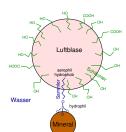
► Sammler

Schäumer

- Verbesserung der Schaumbildung/nachher Zusammenfallen des Schaums
- Stoffe: Tenside ohne Sammlerwirkung (z.B. aliphatische Alkohole C₅ bis C₈; Terpenalkohole, hydroxylierte Polyether HO(RO_x)H)
- ► Regler: Beleber oder Drücker

Allgemeines zur Flotation

Prinzip

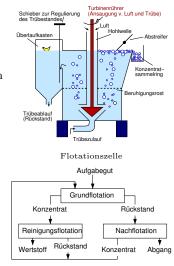

- Ausschwimmen selektiv hydrophobierter Minerale aus einer Trübe
- zunehmend wichtiges Verfahren zur s-s-Trennung (Feinund Feinstkornsortierung)
- z.B. NaCl–KCl; sulfidische Erze (z.B. bei Cu-Gewinnug)

► Teilprozesse

- Sammleradsorption (durch Regler modifizierbar)
- Haften der hydrophobierten Körner auf Gasblasen
- Aufschwimmen beladener Gasblasen, Schaumbildung

► Sammler

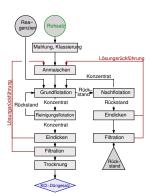
- ► Schäumer
- ► Regler: Beleber oder Drücker
 - Verbesserung der Selektivität der Trennung
 - Wirkung-Prinzipien:
 - pH-Wert-Regulierung
 - Komplexbildung
 - nach Adsorption Verstärkung der Hydrophilie des gedrückten Minerals



Sammler

Sammler(gruppen)	Formel	Mineralien (Beispiele)
Anionenaktive Sammler		
Xanthogenate	R-O-C-S Na+	Sulfide, oxidische Blei- und Kup- ferminerale
Alkyl- u. Aryldithio-Phosphate	$\begin{bmatrix} R - O \\ P - S \end{bmatrix} \begin{bmatrix} Na \\ Na \end{bmatrix}$	Sulfide
Carboxylate	$\begin{bmatrix} R - C - O \\ II \\ O \end{bmatrix} - Na +$	Fluorit, Baryt, Apatit, oxidische Fe- und Mn-Erze, Kassiterit
Alkylsulfate	$\begin{bmatrix} R - O - S & - O \\ II & O \end{bmatrix} - \begin{bmatrix} O & A & A \\ II & O \end{bmatrix}$	oxidische Minerale, Baryt, <u>Sylvin</u>
Alkylsulfonate	$\begin{bmatrix} \mathbf{R} - \mathbf{S} - \mathbf{O} \\ \mathbf{R} - \mathbf{S} - \mathbf{O} \end{bmatrix} - \mathbf{A} + A$	Kieserit, Langbeinit, Polyhalit
Kationenaktive Sammler		
n-Alkylammoniumsalze	R-N-H H CI-	Sylvin, Feldspat, Quarz, Glimmer, oxidische Zn-Minerale
n-Alkylmorphinsalze	$\begin{bmatrix} CH_2 - CH_2 \\ O \\ CH_2 - CH_2 \end{bmatrix} N - C_n H_{2n+1} \end{bmatrix}^+ CI^-$	Halit

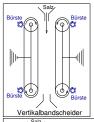
Apparate zur Flotation

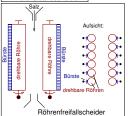

- ▶ mechanische Flotationszelle, ca. 20-50 m³ Volumen
- ▶ auch pneumatische Zellen (ohne Rührer)
- ➤ Trübe wird i.A. in gesonderten Behältern angemaischt (sog. Konditionierung: Zusatz von Sammlern, Schäumern, Drückern, Belebern usw.)
- Gesamtprozesse
 - meist mehrere Flotationen verschaltet
- www.metso.com

Verschaltung von Flotationszellen

Spezielles zur Prozessierung von KCl

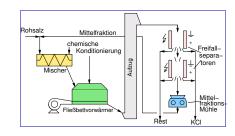
- nur einfachster Fall: KCl NaCl-Trennung
- ▶ je nach Rohstoff deutlich komplexere Verfahren
- ▶ Minerale stark durchwachsen \mapsto sehr feine Aufmahlung nötig (< 1 mm)
- ▶ wichtig: geringer Anteil Tonminerale (Tondrücker!)
- ▶ typische Sammler:
 - 5 % C_{14} -NH $_3$ Cl; 30 % C_{16} -NH $_3$ Cl; 65 % C_{18} -NH $_3$ Cl;
- ▶ typische Werte:
 - Korngrößen: 0.8 bis 1 mm
 - 30-40 Gew.-% Minerale in der Trübe
 - pro t Rohsalz:
 - 40 g Öl (als Drücker)
 - 40-80 g Sammler
 - 20 g Schäumer
- ▶ eigentliche Flotation in 3-stufigen Anlagen




- Einleitung
- 2 A: Trennung durch Löse- und Kristallisationsprozesse
- 3 B: Trennung durch Flotation
- 4 C: Elektrostatische Trennung
- 6 D: Schweretrennung
- 6 Zusammenfassung, Literatur

Elektrostatische Trennung: Prinzip

- Sortierung im elektrischen Feld
- ► Aufladung der Mineralkörner durch
 - Kontaktpolarisation im elektrischen Feld
 - Reibungsaufladung
- ▶ Nichtleiter werden polarisiert und bleiben haften
- ▶ Leiter geben e^- an Walze ab = werden von Walze abgestossen
- Grenze für 'nicht leitfähig' $< 10^{-13} \Omega^{-1} \text{ cm}^{-1}$
 - Anwendung organischer/anorg. Zusätze (Konditionierung)
 - genaue Kontrolle der Luftfeuchtigkeit
- ightharpoonup Apparate \mapsto Elektroscheider \Rightarrow
- ▶ geringer Stromverbrauch, aber Trocknung relativ teuer
- ► Verwendung auch bei:
 - Aufbereitung von Monazitsand
 - Trennung von Quarz und Feldspat
 - Aufbereitung von Phosphaterzen



Prozessierung von KCl

- ① Trockenvermahlung des Rohsalzes, Klassierung
 - ▶ Mahlung bis 1.5 2 mm (nicht darunter, sonst keine Selektivität)

3.1. KCl

- ② Konditionierung
 - ▶ 20-100 g/t Konditionierungsstoffe
 - ▶ in Wirbelschicht der Vorwärmung
- 3 Trocknung
- Aufladung und Einstellung der relativen Luftfeuchtigkeit
 - ▶ KCl: positive Aufladung; NaCl: negative Aufladung
- ⑤ Freifall-Separator
- $\blacktriangleright\,$ 4-5 kV/cm, Elektrodenabstand ca. 25 cm
- ► Vertikalbandscheider (alt)
- ▶ Röhrenfreifallscheider (aktuell)
- ▶ ca. 2 m lange Stahlröhren
- ▶ Bürsten auf feldabgewandter Seite
- ▶ Trennung in 3 Fraktionen
- ☐ meist mehrstufige Trennung

- Einleitung
- ② A: Trennung durch Löse- und Kristallisationsprozesse
- 3 B: Trennung durch Flotation
- 6 D: Schweretrennung
- 6 Zusammenfassung, Literatur

Trennung durch Schweretrennung

- ► Prinzip:
 - Trennung nach Dichte durch Aufschwimmen/Absinken
- ► Spezielles zur Prozessierung von KCl
 - wegen geringer Dichteunterschiede NaCl/KCl schwierig (NaCl: 1.99 g/cm³; KCl: 2.17 g/cm³)
 - Trennmedium: Suspension von Magnetit in Salzlösung
 - Trennung in Hydrozyklonen

ISO10628-

- Einleitung
- 2 A: Trennung durch Löse- und Kristallisationsprozesse
- 3 B: Trennung durch Flotation
- 6 D: Schweretrennung
- 6 Zusammenfassung, Literatur

Zusammenfassung

- ► Trennverfahren <u>ohne</u> Stoffumwandlungen
- ▶ Gewinnung aus dem Meer wegen Mg-Gehalt/Sonnendiagramm schwierig
- ▶ Bergmännischer Abbau Untertage erforderlich
- ▶ NaCl–KCl-Trennproblem (im Detail + Mg/Ca etc.)
- ▶ Grundsätzliche Trennverfahren von Mineralen/Erzen/Salzen etc.:
- A Fraktionierte Kristallisationen (T-Abhängigkeit der L_P)
- B Flotation (nicht nur für KCl/NaCl wichtiges Verfahren)
- C Elektrostatische Trennung (heute Hauptverfahren, energetisch günstig, da Trockungen etc. entfallen)
- D Schweretrennung (für KCl/NaCl heute ohne Bedeutung)

Literatur

Bücher und Artikel

- ▶ H. Schulz, G. Bauer, E. Schachl, F. Hagedordn, P. Schmittinger: *Potassium Compounds*; in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH (2012). (JETZT per VPN zugänglich!!!)
- ▶ Winnacker-Küchler: Chemische Technologie, Band I
- V. Gnielinski, A. Mersmann, F. Thurner: Verdampfung, Kristallisation, Trocknung, Springer Fachmedien (2013).
- ▶ P. Grassmann, F. Widmer, H. Sinn: Einführung in die thermische Verfahrenstechnik deGruyter (1997) [TC 300/4].
- ▶ M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken, A. Renken: *Technische Chemie*, Wiley-VCH, Weinheim (2023).
- ▶ A. Behr, D. W. Agar, J. Jörissen: Einführung in die Technische Chemie, Spektrum, Heidelberg, 2010.

Anlagen (Links zu Web-Seiten)

s. jeweils oben

Inhalt (Prozess- und Stoff-Auswahl)

- Einleitung
- @ Gase
 - Edelgase, N_2 , O_2 (Luftzerlegung, Rektifikation) \checkmark
 - Ammoniak (inkl. Wasserstoff; Gasreaktion)
- 3 Salze
 - KCl (Feststoffprozessierung ohne Stoffumwandlung) 🗸
 - Na₂CO₃ (reziproke Umsetzung) ❖
 - Phosphate (Neutralisations- und Verdrängungsreaktionen)
- Chlorate und Perchlorate (elektrochemische Oxidation)
 Säuren
 - Schwefelsäure (über Gasreaktionen)
 - Essigsäure (homogene Katalyse) ✓
 - Phosphorsäure (durch Verdrängungsreaktionen)
 - Salpetersäure
- **6** Basen
 - Chloralkali-Elektrolyse
- 6 Metalle
 - Eisen, Stahl
 - Kupfer
 - Aluminium
- 7 Weitere Anorganische Grund- und Wertstoffe
 - Zementklinker, Gläser, Düngemittel, Hochtemperaturwerkstoffe, Explosivstoffe,