### $A_x^{I} \operatorname{Fe}_y Q_z$

#### Einleitung

Ortho-Ferrate (n:1:4)

Ferrate(III)

3:1:3 4:2:5

1:1:2

Ferrate(II/III) (n:1:2)

Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate Cluster

Bänder

Schichten

Zusammenfassung Eisen III: Alkalimetall-Chalkogenido-Ferrate  $A_x^{l}$ [Fe<sub>y</sub>Q<sub>z</sub>] Einfache Verbindungen als Modelle für komplexe Systeme, von Metalloproteinen bis zu IBSC

Forschungsbericht aus dem AK Röhr

Caroline Röhr

AC Oberseminar, 29. November 2018

# $A_x^{\sf I}\,{\sf Fe}_y\,Q_z$

## Einleitung

|                  | Ortho-Ferrat   |
|------------------|----------------|
| Einleitung       |                |
| Ortho-           | Ferrate(III)   |
| Ferrate          | 3.1.3          |
| ( <i>n</i> :1:4) | 4.0.5          |
| Ferrate(III)     | 4:2:5          |
| 3:1:3            | 1:1:2          |
| 4:2:5            |                |
| 1:1:2            | Ferrate(II/III |
| Ferrate(II/III)  | Ketten         |
| ( <i>n</i> :1:2) | Cluster        |
| Ketten           | Cluster        |
| Cluster          | Weitere Ferra  |
| Weitere Fer-     |                |
| rate(II/III)     | Diferrate      |
| Diferrate        | Cluster        |
| Cluster          | Bänder         |
| Bänder           | C L L L        |
| Schichten        | Schichten      |
| Zusammen-        | Zucommonfo     |
| lassung          | Zusammenia     |
|                  |                |

| 3:1:3                                                |
|------------------------------------------------------|
| 4:2:5                                                |
| 1:1:2                                                |
| errate(II/III) ( <i>n</i> :1:2)<br>Ketten<br>Cluster |
| /eitere Ferrate(II/III)                              |
| Diferrate                                            |
| Cluster                                              |
| Bänder                                               |
| Schichton                                            |

## K. Preis (1869) zu KFeS<sub>2</sub>, inkl. Herstellung

## $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$

#### Einleitung

Ortho-Ferrate (n:1:4)

#### Ferrate(III)

3:1:3 4:2:5

1:1:2

#### Ferrate(II/III) (n:1:2)

Ketten

-----

#### Weitere Ferrate(II/III)

Diferrate Cluster Bänder

Schichten

Zusammenfassung Nöllner und R. Hoffmann constatiren übereinstimmend die Bildung dieses Doppelsulfides bei der Fabrication des gelben Blutlaugensalzes und letzterer glaubt ihm die Zusammensetzung, KS,FeS, beilegen zu können, weil die Zersetzung desselben mittelst Säuren unter blosser Schwefelwasserstoffentwicklung ohne Abscheidung von Schwefel erfolgt; sonst

Mich bewog zur wiederholten Bearbeitung dieses Gegenstandes der Umstand, dass es mir gelungen, ein solehes Doppelsalz im krystallisirten Zustande darzustellen. Das erste Product dieser Art, also ein krystallisirtes Kaliumeisensulfid, erhielt ich bei gelegentlicher Bereitung von Rhodankalium nach Liebig's Methode. Die nach diesem Verfahren erhaltene und erkaltete Schmelze zeigte sehon auf der Oberfläche eine ganz deutlich krystallinische Structur, indem die Masse von zahlreichen, halbmetallischglänzenden, zarten Prismen durchsetzt erschien, welche nach dem Auslaugen mit Weingeist und Wasser auch wirklich in Form prächtig schillernder, nadelförmiger Individuen zurückblieben. Von der in den





K. Preis, J. prakt. Chem., 107, 12 (1869). (\*Liebigs-Methode: KSCN aus K2CO2 + S + Blutlaugensalz, im Fe-Tiegel)

## 3Fe4S- und 4Fe4S-Cluster im Ferredoxin I von Azotobacter vinelandii



B. Shen, L. L. Martin, J. N. Butt, F. A. Armstrong, C. D. Stout, G. M. Jensen, P. J. Stephens, G. N. La Mar, C. M. Gorst, B. K. Burgess, J. Biol. Chem., 268, 25928-25939 (1993).

## Fe-basierte Supraleiter (IBSC)



fassung

## Vergleich der Chalkogenido-'Liganden'

 $A_x^{I} \operatorname{Fe}_y Q_z$ 

#### Einleitung

| Ortho-           |  |
|------------------|--|
| Ferrate          |  |
| ( <i>n</i> :1:4) |  |

Ferrate(III)

3:1:3 4:2:5

1:1:2

### Ferrate(II/III) (n:1:2)

Ketten

Cluster

#### Weitere Ferrate(II/III)

Diferrate

Cluster Bänder

Schichten

|                                   | Oxido                         | Sulfido           | Selenido          | Tellurido            |
|-----------------------------------|-------------------------------|-------------------|-------------------|----------------------|
| Ladung                            |                               | einheitlich -     | -2 (hoch)         |                      |
| kovalent                          | $\sigma$ -Donor, $\pi$ -Donor |                   |                   |                      |
| Ligandenfeldaufspaltung           | mittel (HS/LS) schwach (HS)   |                   |                   |                      |
| Elektronegativität                | sehr groß                     | $\rightarrow$     | $\rightarrow$     | mittelgross          |
| (Allred-Rochow)                   | $(\chi=3.50)$                 | $(\chi = 2.44)$   | $(\chi = 2.48)$   | $(\chi=2.01)$        |
| HSAB                              | hart                          | $\longrightarrow$ | $\rightarrow$     | weich                |
|                                   | Ladungs-kontrolliert          |                   |                   | Orbital-kontrolliert |
| Stabilisierung von M-OS           | hohe OS                       | mittlere OS       | kl                | einere OS            |
| $s \leftrightarrow p$ -Abstand    | sehr groß                     | $\rightarrow$     | $\longrightarrow$ | groß                 |
| lonenradien r <sup>[6]</sup> [pm] | 140                           | 184               | 198               | 221                  |
| Koordinationszahlen für $M$       | 4 <u>6</u>                    |                   | <u>4</u> 6        | j                    |

# ? M: Fe ?

## $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$

### Einleitung

Ortho-Ferrate (n:1:4)

### Ferrate(III)

- 3:1:3
- 4:2:5
- 1:1:2

#### Ferrate(II/III) (n:1:2)

- Ketten
- Cluster

#### Weitere Ferrate(II/III)

- Diferrate
- Cluster
- Schichten

- reine Oxido/Sulfido/Selenido/Telluriod-Ferrate lange bekannt<sup>[1]</sup> und kristallographisch gut untersucht<sup>[2,3]</sup>
  - ? gezielte Synthesen
  - ? fehlende Verbindungen in bekannten Reihen
  - ? chemische Bindung und elektronische Strukturen
  - ? physikalische Eigenschaften
- viele Oxidationsstufen (besonders f
  ür Q = O), variable d-e<sup>-</sup>-Konfigurationen
- mit allen Chalkogenen gemischtvalente Ferrate(II/III)
- Kontroversen zum atomarer Magnetismus (HS/LS ??)
- interessanter kollektiver Magnetismus, verschiedene Aussagen zum Mechanismus des magnetischen Austauschs
- Bindungstheorie handhabbar
- einfache Modelle für (s.v.) biologische Systeme, IBSC etc.

<sup>[1]</sup> K. Preis et al. (1869) , [2] R. Hoppe et al. (1980), AK C.R. (2000); [3] W. Bronger et al. (1970-2000).

# ? Gegenionen: (schwere) Alkalimetalle (Na<sup>+</sup>), K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup> ?

## $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$

#### Einleitung

Ortho-Ferrate (n:1:4)

- Ferrate(III)
- 3:1:3
- 4:2:5
- 1:1:2

#### Ferrate(II/III) (n:1:2)

- Ketten
- Cluster

#### Weitere Ferrate(II/III)

- Diferrate Cluster
- Bänder
- Schichten

- Li-, Na-, Erdalkalimetall- und Seltenerd-Salze zumeist gut untersucht
- K-, Rb- und Cs-Salze
  - maximale lonenradien
  - maximale Zahl an Kationen pro Anion
- $\blacksquare \mapsto$  große Gesamtvolumina der Kationen
  - solierte Anionen bzw. niedriger Kondensationsgrad im Anion
  - **n**iedrige Koordinationszahlen  $\mapsto$  ! nur Tetraeder !

# Synthetische Zugänge zu Chalkogenido-Ferraten $A_x[Fe_yQ_z]$

## $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$

### Einleitung

- Ortho-Ferrate (n:1:4)
- Ferrate(III)
- 3:1:3
- 4:2:5
- 1:1:2

#### Ferrate(II/III) (n:1:2)

- Ketten
- Cluster

#### Weitere Ferrate(II/III)

- Diferrate
- Cluster
- Bänder
- Schichten

- bisher:
  - Q = O: meist Nebenprodukte bei Arbeiten in Eisentiegeln<sup>[2]</sup>
  - Q = S, Se, Te: Synthesen im  $H_2Q$ -Strom und mit A-Carbonaten als A-Quelle<sup>[3]</sup>
- hier: in Korundtiegeln (ggf. Tiegel-in-Tiegel-Technik) in Stahlautoklaven unter Argon ausgehend von:
  - *M*: elementar und/oder *M*-Chalkogenid  $M_x Q_y$
  - Q = O: Oxide  $A_2O$ , Peroxide/Hyperoxide  $A_2O_2/AO_2$ , Suboxide
  - Q = S, Se, Te: (Poly-)Chalkogenide  $A_2Q_x$ , elementare Chalkogene
  - A = s.o. bei Q; elementare Alkalimetalle



- → breite Variation der Probenzusammensetzung möglich
  - $\mapsto$  fast komplette Phasendiagramme A-Fe-Q präparativ erreichbar

<sup>[1]</sup> K. Preis et al. (1869); [2] R. Hoppe et al.; [3] W. Bronger et al.

## $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_Z$

## Einleitung

#### Einleitung

Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3

4:2:5

1:1:2

#### Ferrate(II/III) (n:1:2)

Ketten

Cluster

#### Weitere Ferrate(II/III)

Diferrate

Cluster

Bänder

Schichten

Zusammenfassung

# Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3 4:2:5 1:1:2 Ferrate(II/III) (n:1: Ketten Cluster Weitere Ferrate(II/ Diferrate Clustar

Bänder

Schichten

## Ortho-Oxido- und Sulfido-Ferrate $A_n$ [Fe $Q_4$ ]



fassung

C. Hoch, Z. Naturforsch. 66b, 1248-1254 (2011); [2] G. Brachtel, R. Hoppe, Z. Anorg. Allg. Chem. 446, 77-86 (1978); [3] C. Jeannot et al., J. Solid State Chem. 165, 266-277 (2002); [4] K. Wahl, W. Klemm, G. Wehrmeyer, Z. Anorg. Allg. Chem. 285, 322-336 (1956); [5] R. J. Audette et al., J. Solid State Chem. 8, 43-49 (1973); [6] W. Bronger, H. Balk-Hardtdegen, U. Ruschewitz, Z. Anorg. Allg. Chem. 616, 14-18 (1992); [7] K. O. Klepp, W. Bronger, Z. Anorg. Allg. Chem. 532, 23-30 (1986).

## Ortho-Oxido- und Sulfido-Ferrate $A_n$ [Fe $Q_4$ ]



Zusammenfassung

C. Hoch, Z. Naturforsch. 66b, 1248-1254 (2011); [2] G. Brachtel, R. Hoppe, Z. Anorg. Alg. Chem. 446, 77-86 (1978); [3] C. Jeannot et al., J. Solid State Chem. 165, 266-277 (2002); [4] K. Wahl, W. Klemm, G. Wehrmeyer, Z. Anorg. Alg. Chem. 285, 322-336 (1956); [5] R. J. Audette et al., J. Solid State Chem. 8, 43-49 (1973); [6] W. Bronger, H. Balk-Hardtdegen, U. Ruschewitz, Z. Anorg. Alg. Chem. 616, 14-18 (1992); [7] K. O. Klepp, W. Bronger, Z. Anorg. Alg. Chem. 532, 23-30 (1966).

 $(Rb/Cs)_7[Fe^{IV,V}O_4]_2$ 

Kristalle: schwarz

Α

## $A_x^{|} \operatorname{Fe}_V Q_Z$

Synthese: Rb/Cs, (Rb/Cs)O<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub> (9:5:2)  $T_{\rm max} = 500^{\circ} \rm C$ 

Rh

Cs

#### Einleitung

Ortho-Ferrate (*n*:1:4)

### Ferrate(III) 3:1:3 4:2:5 1:1:2

Ferrate(II/III) (n:1:2)

Ketten Cluster

#### Weitere Ferrate(II/III)

Diferrate

Cluster Bänder

Schichten

Zusammenfassung

| Strukturty                 | р          | eiger       | ner       |
|----------------------------|------------|-------------|-----------|
| Kristallsys                | tem        | mono        | klin      |
| Raumgrup                   | ре         | P21/c,      | Nr. 14    |
| Gitter-                    | а          | 637.19(5)   | 666.0(1)  |
| parameter                  | Ь          | 1047.39(8)  | 1097.4(2) |
| [pm, <sup><i>o</i></sup> ] | с          | 2070.66(14) | 2156.6(4) |
|                            | $\beta$    | 92.47(1)    | 92.83(1)  |
| Z                          |            | 4           |           |
| <i>R</i> -Wert             | <i>R</i> 1 | 0.0677      | 0.0466    |
| Abstände                   | Fe(1)-O    | 175-178     | 177-179   |
| [pm]                       | Fe(2)-O    | 174-176     | 174-178   |
| CN                         | 0          | 1 + 5,      | 1 + 6     |
|                            | Α          | 6 -         | 8         |

Gitterenergie: für  $Fe(1)^{+IV}/Fe(2)^{+V}$ 60 kJ/mol günstiger als für Fe(1)<sup>+V</sup>/Fe(2)<sup>+IV</sup>

G. Frisch, C.R., Z. Anorg. Allg. Chem. 631, 507-517 (2005).



 $(Rb/Cs)_7 [Fe^{IV,V}O_4]_2$ 

Kristalle: schwarz

### $A_x^{|} \operatorname{Fe}_V Q_Z$

Synthese: Rb/Cs,  $(Rb/Cs)O_2$ ,  $Fe_2O_3$  (9:5:2)  $T_{\rm max} = 500^{\circ} \rm C$ 

#### Einleitung

|   | rtho- |  |
|---|-------|--|
| 2 |       |  |
|   |       |  |

Ferrate(III) 3:1:3 4:2:5 1:1:2

Ferrate(II/III) (n:1:2)

Ketten Cluster

Weitere Ferrate(II/III)

- Diferrate
- Cluster

Bänder Schichten

Zusammenfassung

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                             |                     | Α          | Rb          | Cs        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|-------------|-----------|
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                               | Strukturty          | р          | eiger       | ner       |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                               | Kristallsys         | tem        | monoklin    |           |
| $\begin{array}{cccc} \mbox{Gitter-} & a & 637.19(5) & 666.0(1) \\ \mbox{parameter} & b & 1047.39(8) & 1097.4(2) \\ \mbox{[pm, }^o] & c & 2070.66(14) & 2156.6(4) \\ \mbox{$\beta$} & 92.47(1) & 92.83(1) \\ \mbox{$Z$} & & 4 \\ \mbox{R-Wert} & R1 & 0.0677 & 0.0466 \\ \mbox{Abstande} & Fe(1)-O & 175-178 & 177-179 \\ \mbox{[pm]} & Fe(2)-O & 174-176 & 174-178 \\ \mbox{CN} & O & 1+5, 1+6 \\ \mbox{$A$} & 6-8 \\ \end{array}$ | Raumgrup            | ре         | P21/c,      | Nr. 14    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                             | Gitter-             | а          | 637.19(5)   | 666.0(1)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                    | parameter           | Ь          | 1047.39(8)  | 1097.4(2) |
| $ \begin{array}{cccc} \beta & 92.47(1) & 92.83(1) \\ Z & & & & \\ R \cdot Wert & R1 & 0.0677 & 0.0466 \\ Abstände & Fe(1)-O & 175-178 & 177-179 \\ [pm] & Fe(2)-O & 174-176 & 174-178 \\ CN & O & 1+5, 1+6 \\ A & 6-8 \end{array} $                                                                                                                                                                                                | [pm, <sup>o</sup> ] | с          | 2070.66(14) | 2156.6(4) |
| $ \begin{array}{c cccc} Z & & & & & & & \\ \hline R \cdot Wert & R1 & & 0.0677 & 0.0466 \\ \hline Abstände & Fe(1)-O & 175-178 & 177-179 \\ \hline [pm] & Fe(2)-O & 174-176 & 174-178 \\ \hline CN & O & & 1+5, 1+6 \\ \hline A & & 6-8 \end{array} $                                                                                                                                                                              |                     | $\beta$    | 92.47(1)    | 92.83(1)  |
| R-Wert         R1         0.0677         0.0466           Abstände         Fe(1)-O         175-178         177-179           [pm]         Fe(2)-O         174-176         174-178           CN         O         1 + 5, 1 + 6           A         6 - 8                                                                                                                                                                            | Z                   |            | 4           |           |
| Abstände         Fe(1)-O         175-178         177-179           [pm]         Fe(2)-O         174-176         174-178           CN         O         1 + 5, 1 + 6           A         6 - 8                                                                                                                                                                                                                                      | <i>R</i> -Wert      | <i>R</i> 1 | 0.0677      | 0.0466    |
| [pm] Fe(2)-O 174-176 174-178<br>CN O 1+5, 1+6<br>A 6-8                                                                                                                                                                                                                                                                                                                                                                             | Abstände            | Fe(1)-O    | 175-178     | 177-179   |
| CN O 1 + 5, 1 + 6<br>A 6 - 8                                                                                                                                                                                                                                                                                                                                                                                                       | [pm]                | Fe(2)-O    | 174-176     | 174-178   |
| A 6 - 8                                                                                                                                                                                                                                                                                                                                                                                                                            | CN                  | 0          | 1 + 5,      | 1 + 6     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | Α          | 6 -         | 8         |

Gitterenergie: für  $Fe(1)^{+IV}/Fe(2)^{+V}$ 60 kJ/mol günstiger als für Fe(1)<sup>+V</sup>/Fe(2)<sup>+IV</sup>

G. Frisch, C.R., Z. Anorg. Allg. Chem. 631, 507-517 (2005).



# $K_5[Fe^{III}O_4]$

## $A_x^{|} \operatorname{Fe}_V Q_Z$

#### Einleitung

Ortho-Ferrate

3:1:3

4:2:5

1:1:2

Schichten Zusammenfassung

CN(Fe)=14 K( Ferrate(III) 1+6 Strukturtyp  $Na_5GaO_4$ K(5) Kristallsystem orthorhomb. Raumgruppe Pbca, Nr. 61 Gitter-1124.0(2)а K(3) Ferrate(II/III) 667.95(9) parameter Ь (n:1:2)1+5 0 [pm] с 2034.8(3) Ketten 7 8 Cluster 0.0585 R-Wert R1K(2) Weitere Fer-Abstände Fe-O 187.7-191.9 rate(II/III) [pm] Diferrate CN 0 1+5, 1+6Cluster κ 4 - 6 isotyp:  $Na_{E}[FeO_{4}]^{2}$ ,  $Na_{E}[FeS_{4}]^{3}$  (!) Bänder

Synthese: Kristalle:

[1] G. Frisch, C.R., Z. Naturforsch. 60b, 1224-1230 (2005); [2] G. Brachtel, R. Hoppe, Z. Anorg. Allg. Chem. 446, 77-86 (1978); [3] K. O. Klepp, W. Bronger, Z. Anorg. Allg. Chem. 532, 23-30 (1986).

Fe<sub>2</sub>O<sub>3</sub>, K, KO<sub>2</sub> (stöchiom.); T<sub>max</sub>=600 °C

D

gelbbraun transparent

🖉 к(3)

 $\alpha/\beta$ -Cs<sub>5</sub>[Fe<sup>III</sup>O<sub>4</sub>]

## $A_x^{|} \operatorname{Fe}_y Q_z$

Einleitu

Ferrate

Ferrate

3:1:3

4:2:5

1:1:2

Ferrate

(n:1:2)

Weitere rate(II/

fassung

Zusammen-

| Einleitung      | Form                                 |            | α          | β              |
|-----------------|--------------------------------------|------------|------------|----------------|
| -               | Strukturtyp                          |            | jeweils    | s eigene       |
| Ortho-          | Kristallsyster                       | n          | mor        | noklin         |
| (n:1:4)         | Raumgruppe                           |            | $P2_1/c$   | , Nr. 14       |
|                 | Gitter-                              | а          | 880.78(13) | 1133.92(10     |
| Ferrate(III)    | parameter                            | Ь          | 1067.4(2)  | 1269.49(13     |
| 3:1:3           | [pm, <sup>o</sup> ]                  | с          | 1115.7(2)  | 725.05(6)      |
| 4:2:5           |                                      | $\beta$    | 97.354(3)  | 99.073(7)      |
| 1:1:2           | V [10 <sup>6</sup> pm <sup>3</sup> ] |            | 1030.7(2)  | 1040.2(3)      |
| Ferrate(II/III) | Z                                    |            |            | 4              |
| (n:1:2)         | <i>R</i> -Wert                       | <i>R</i> 1 | 0.0259     | 0.0388         |
| Ketten          | Abstände                             | Fe-O       | 188.3 -    | 188.9 -        |
| Cluster         | [pm]                                 |            | 191.3      | 190.4          |
| Weitere Fer-    | CN                                   | 0          | 1+5 (2×)   | 1+5 (3×)       |
| rate(II/III)    |                                      |            | 1+6 (1×)   | -              |
| Diferrate       |                                      |            | 1+7 (1×)   | $1+7(1\times)$ |
| Cluster         |                                      | Cs         | 4 (3×)     | 5 (2×)         |
| Bänder          |                                      |            | 6 (2×)     | 6 (3×)         |
| Schichten       |                                      |            |            |                |

Synthese: Cs, CsO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub> ('Cs<sub>2</sub>O'-Überschuss); T<sub>max</sub>=500 °C Farbe:  $\alpha$ : braun-transparent

 $\beta$ : rubinrot durchscheinend



G. Frisch, C.R., Z. Anorg. Allg. Chem. 631, 507-517 (2005).

## Ortho-Oxido-Ferrate: Fe-O-Abstände und O-Fe-O-Winkel

 $A_x^{\rm I} {\rm Fe}_y Q_z$ 



Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3 4:2:5

1:1:2

#### Ferrate(II/III) (n:1:2)

Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate Cluster

Bänder

Schichten



# Vergleich der Zustandsdichten von Na<sub>5</sub>[Fe<sup>III</sup>O<sub>4</sub>] und Na<sub>5</sub>[Fe<sup>III</sup>S<sub>4</sub>]



fassung

FM, FP-LAPW, PBE-GGA+U, U=4.2/2.0eV, 30/56 k-Pkte/IBZ; [1] G. Brachtel, R. Hoppe, Z. Anorg. Allg. Chem. 446, 77-86 (1978); [2] K. O. Klepp, W. Bronge, Z. Anorg. Allg. Chem. 532, 23-30 (1986); [3] M. Atanasov, R. H. Potze, G. A. Sawatzky, J. Solid State Chem. 199, 380-393 (1995); \*: nur Fermi-Kontakt-Anteil.

# K<sub>9</sub>[Fe<sup>III</sup>S<sub>4</sub>](S<sub>2</sub>)(S): Kristallstruktur



fassung



 M. Schwarz, M. Haas, C.R., Z. Anorg. Allg. Chem. 639, 360-374 (2013); [2] K. O. Klepp, W. Bronger Z. Anorg. Allg. Chem. 532, 23-30 (1986); [3] W. Bronger, U. Ruschewitz, J. Alloys Compd. 197, 83-86 (1993).

## $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_Z$

## Einleitung

#### Einleitung

Ortho-Ferrate (n:1:4)

Ferrate(III)

3:1:3 4:2:5

1:1:2

#### Ferrate(II/III) (n:1:2)

Ketten

Cluster

#### Weitere Ferrate(II/III)

Diferrate

Cluster

Bänder

Schichten

Zusammenfassung

Sitho-Perfate (II.)

Ferrate(III)

3:1:3 4:2:5

1:1:2

## Ferrate(II/III) (*n*:1:2)

Ketten Cluster

## Veitere Ferrate(II/III)

Diferrate Cluster Bänder Schichten

## Oxido/Sulfido/Selenido-Ferrate(III)



## $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_Z$

## Einleitung

Einleitung

Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3

4:2:5 1:1:2

Ferrate(II/III) (n:1:2)

Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate

Cluster Bänder

Schichten

Zusammenfassung

Ferrate(III)

**3:1:3** 4:2:5

1:1:2

## Ferrate(II/III) (*n*:1:2)

Ketten Cluster

## Veitere Ferrate(II/III)

Diferrate Cluster Bänder Schichten

# Vergleich der Chalkogenido-Diferrate $A_6[Fe_2^{III}Q_6]$

## $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$

Einleit Ortho Ferrat (n:1:4 Ferrat 3:1:3 4:2:5 1:1:2 Ferrat (n:1:2 Ketter Cluste Weite rate(II

|                 | 'Ox                          | ido'  |                           | 'Sulfido' +            | 'Selenide | o'                 |
|-----------------|------------------------------|-------|---------------------------|------------------------|-----------|--------------------|
| A               | Strukturtyp                  | CNQ   | <i>d</i> <sub>Fe-Fe</sub> | Strukturtyp            | CNQ       | d <sub>Fe-Fe</sub> |
| No <sup>+</sup> | Kettenferrat                 | 1+6   | 375.8                     | $Na_6[Fe_2S_6]^{[3]}$  | 1+6       | 287.7              |
| INd             | (polymorph) <sup>[1,2]</sup> |       |                           | $P_{2_1/c}$            | 2+5       |                    |
| K+              | $Rb_6[In_2S_6]^{[4]}$        | 1+6   | 271                       | $Cs_6[Ga_2Se_6]$       | 1+7       | 298.4              |
|                 | C2/m                         | 2+5   |                           | $P_{2_1/c}$            | 2+5       |                    |
|                 | $Rb_6[In_2S_6]$              | 1+6   | 272.8                     | $Cs_6[Ga_2Se_6]$       | 1+7       | 300.5              |
| Ph+             | C2/m                         | 2+5   |                           | $P_{2_1}/c$            | 2+5       |                    |
|                 |                              |       |                           | $Ba_6[Al_2Sb_6]$       | 1+6       | 297.3              |
|                 |                              |       |                           | Стсе                   | 2+5       |                    |
| Cs+             | $K_6[Mn_2O_6]$               | 1+6/5 | 273.3                     | $Ba_6[Al_2Sb_6]^{[5]}$ | 1+6       | 295.0              |
|                 | $P_{2_1}/c$                  | 2+4   |                           | Стсе                   | 2+5       |                    |

Cluster Bänder Schichten

B. M. Sobotka, A. Möller, Z. Anorg. Alg. Chem. 629, 2063-2065 (2003); [2] M. Sofin, M. Jansen, Solid State Sci. 8, 19-23
 (2006); [3] P. Müller, W. Bronger, Z. Naturforsch. 34b, 1264-1266 (1979); [4] H. Rieck, R. Hoppe, Angew. Chem. 85, 589-590 (1973);
 [5] W. Bronger, U. Ruschewitz, P. Müller J. Alloys Compd. 187, 95-103 (1992).

# $K_6[Fe_2O_6]$ und $Rb_6[Fe_2O_6]$ : Kristallstrukturen

## $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$

Einle

Orthe Ferra

(n:1:4

Ferra

3:1:3

4:2:5

1:1:2

Ferra

Kette

Weite

rate()

Difer

Clust Bänd

Schic

Zusammenfassung

|            | Synthese:           | Fe <sub>2</sub> O <sub>3</sub> ,<br><i>T</i> max = | K/Rb, (K/R<br>600 °C | b)O <sub>2</sub> (stöc        | :h.) |
|------------|---------------------|----------------------------------------------------|----------------------|-------------------------------|------|
| itung      | Kristalle:          | ie nach                                            | Betrachtung          | swinkel                       |      |
|            |                     | blaßgrüu                                           | n bis blaßbra        | un (Pleoch                    | rois |
| D-         |                     | biub <u>B</u> iu                                   |                      |                               |      |
| 10<br>1)   |                     |                                                    |                      |                               |      |
| ·          |                     | Α                                                  | K <sup>[1]</sup>     | Rb <sup>[2]</sup>             |      |
| te(III)    | Strukturty          | р                                                  | Rb <sub>6</sub> [In  | <sub>2</sub> S <sub>6</sub> ] |      |
|            | Kristallsys         | tem                                                | mono                 | klin                          |      |
|            | Raumgrup            | pe                                                 | C2/m, I              | Nr. 12                        |      |
|            | Gitter-             | а                                                  | 713                  | 741.8(2)                      |      |
| te(II/III) | parameter           | Ь                                                  | 1112                 | 1148.7(2)                     |      |
| 2)         | [pm, <sup>o</sup> ] | с                                                  | 652                  | 680.1(1)                      |      |
| :n         |                     | β                                                  | 102.3                | 103.65(2)                     |      |
| er         | z                   |                                                    | 4                    |                               |      |
| ere Fer-   | <i>R</i> -Wert      | <i>R</i> 1                                         | -                    | 0.0370                        |      |
| II/III)    | Abstände            | Fe-O <sup>t</sup>                                  | 185.3                | 184.4(5)                      |      |
| rate       | [pm]                | Fe-O <sup>br</sup>                                 | 194.1-195.5          | 194.2(6)                      |      |
| er         |                     | Fe-Fe                                              | 271                  | 272.8                         |      |
| er         | CN                  | 0                                                  | 1 + 6,               | 2 + 5                         |      |
| hten       |                     | Α                                                  | 5,                   | 6                             |      |
|            |                     |                                                    |                      |                               |      |



[1] H. Rieck, R. Hoppe, Angew. Chem. 85, 589 (1973); [2] G. Frisch, C.R., Z. Naturforsch. 60b, 732-740 (2005).

# Cs<sub>6</sub>[Fe<sup>III</sup>O<sub>6</sub>]: Kristallstruktur

 $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$ 

Einleitung Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3 4:2:5 1:1:2

Ferrate(II/III) (n:1:2)

Ketten Cluster

Weitere Ferrate(II/III)

Diferrate Cluster Bänder

Schichten

Zusammenfassung

| Synthese: | $\mathrm{Fe}_2\mathrm{O}_3$ , Cs, CsO $_2$ | (stöch.) |
|-----------|--------------------------------------------|----------|
|           | $T_{max}$ =600 °C                          |          |

| Strukturtyp                        |                                                 | $K_6[Mn_2O_6]$                                                   |
|------------------------------------|-------------------------------------------------|------------------------------------------------------------------|
| Kristallsystem                     | ı                                               | monoklin                                                         |
| Raumgruppe                         |                                                 | <i>P</i> 2 <sub>1</sub> / <i>c</i> , Nr. 14                      |
| Gitter-                            | а                                               | 724.6(2)                                                         |
| parameter                          | Ь                                               | 1212.1(5)                                                        |
| [pm, <sup>o</sup> ]                | с                                               | 767.6(3)                                                         |
|                                    | $\beta$                                         | 105.03(4)                                                        |
| Z                                  |                                                 | 2                                                                |
|                                    |                                                 |                                                                  |
| <i>R</i> -Wert                     | <i>R</i> 1                                      | 0.0272                                                           |
| <i>R</i> -Wert<br>Abstände         | R1<br>Fe-O <sup>t</sup>                         | 0.0272<br>183.6, 184.1                                           |
| <i>R</i> -Wert<br>Abstände<br>[pm] | R1<br>Fe-O <sup>t</sup><br>Fe-O <sup>br</sup>   | 0.0272<br>183.6, 184.1<br>193.6, 193.8                           |
| <i>R</i> -Wert<br>Abstände<br>[pm] | R1 Fe-O <sup>t</sup> Fe-O <sup>br</sup> Fe-Fe   | 0.0272<br>183.6, 184.1<br>193.6, 193.8<br>273.3                  |
| R-Wert<br>Abstände<br>[pm]<br>CN   | R1 Fe-O <sup>t</sup> Fe-O <sup>br</sup> Fe-Fe O | 0.0272<br>183.6, 184.1<br>193.6, 193.8<br>273.3<br>1+6, 1+5, 2+4 |



Untergruppe (k2) von C2/m des  $Rb_6[In_2S_6]$ -Typs (A = K, Rb)

G. Frisch, C.R., Z. Kristallogr. 220, 135-141 (2005).

# $K_6[Fe_2^{III}S_6]$ , m-Rb<sub>6</sub>[Fe\_2^{III}S\_6] und m-Rb<sub>6</sub>[Fe\_2^{III}Se\_6]

| $A_x^{I}$ F | e <sub>y</sub> Q <sub>z</sub> |
|-------------|-------------------------------|
|-------------|-------------------------------|

Einleitung

Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3 4:2:5

1:1:2

Ferrate(II/ (n:1:2)

Ketten

Cluster Weitere Fe

rate(II/III)

Diferrate Cluster

Bänder

Schichten

Zusammenfassung

|     | Synthese                   | : K/S:             | K, Fe, S (5                                                                   | 5:1:4); T <sub>max</sub> =              |              | K(3) | <b>6</b> <sup>K(1)</sup> | K(2)                                      |      |        |
|-----|----------------------------|--------------------|-------------------------------------------------------------------------------|-----------------------------------------|--------------|------|--------------------------|-------------------------------------------|------|--------|
|     |                            | Rb/S               | : Rb <sub>2</sub> S, Fe,                                                      | S; 1 <sub>max</sub> =50<br>Se (stöchion | $U^{\circ}C$ |      | / A                      |                                           |      |        |
|     | Kristalle:                 | grün               | netallisch g                                                                  | S(3)(5                                  | K(1)         |      | D <sup>S(2)</sup>        |                                           |      |        |
|     |                            |                    |                                                                               |                                         |              | K(1  | K(3)                     | Fe Action                                 | d Fe |        |
|     | Verbindun                  | g                  | $K_{6}[Fe_{2}S_{6}]^{[1]}Rb_{6}[Fe_{2}S_{6}]^{[1]}Rb_{6}[Fe_{2}Se_{6}]^{[2]}$ |                                         |              |      |                          |                                           | S(1) | K(3)   |
|     | Strukturtyp                |                    | Cs <sub>6</sub> [Ga <sub>2</sub> Se <sub>6</sub> ]                            |                                         |              | A    | S(2)                     |                                           |      | 8(3)   |
|     | Kristallsystem             |                    | monoklin                                                                      |                                         |              | K(3) | K(3)C                    |                                           |      |        |
|     | Raumgruppe                 |                    | <i>P</i> 2 <sub>1</sub> / <i>c</i> , Nr. 14                                   |                                         |              | /    | K(2)                     | K(2)                                      |      |        |
|     | Gitter-                    | а                  | 772.50(1)                                                                     | 796.06(5)                               | 827.84(5)    |      | <b>Б</b> к(              | 1)                                        | _    |        |
| II) | parameter                  | Ь                  | 1251.24(2)                                                                    | 1291.35(8)                              | 1329.51(7)   |      |                          |                                           |      |        |
|     | [pm, <sup><i>o</i></sup> ] | с                  | 1002.80(1)                                                                    | 1032.40(6)                              | 1074.10(6)   | A-   |                          | 10                                        | 2    |        |
|     |                            | $\beta$            | 127.526(1)                                                                    | 127.163(4)                              | 127.130(5)   | S(2) | S(1) 👴 🔍                 | $\langle \langle \langle \rangle \rangle$ | • ~  |        |
|     | Z                          | Ζ 2                |                                                                               |                                         |              | S(3) | <b>`</b>                 | •                                         | •    |        |
| r-  | <i>R</i> -Wert             | <i>R</i> 1         | 0.0356                                                                        | 0.0466                                  | 0.0443       |      |                          |                                           |      |        |
|     | Abstände                   | $Fe-S^t$           | 224.3                                                                         | 224.9                                   | 237.4/239.3  | D    |                          |                                           |      | $\geq$ |
|     | [pm]                       | Fe-S <sup>br</sup> | 230.5                                                                         | 231.0                                   | 241.0/243.3  |      | K(3)                     | - WK(1)                                   | -    |        |
|     |                            | Fe-Fe              | 298.4                                                                         | 300.5                                   | 313.4        |      |                          |                                           | •    |        |
|     | CN                         | S                  | 1+7, 2+5                                                                      |                                         |              | A    | К                        | .(2)                                      | 27   | 100    |
|     | A 6 (2×), 7                |                    |                                                                               |                                         | ¥ «          |      |                          |                                           |      |        |
|     |                            |                    |                                                                               |                                         |              |      | -                        | U                                         |      | -      |

M. Schwarz, M. Haas, C.R., Z. Anorg. Allg. Chem. 639, 360-374 (2013);
 M. Schwarz, P. Stüble, C.R., Z. Naturforsch. 72b, 529-547 (2017).

# $o-Rb_6[Fe_2S_6]$ und $o-Rb_6[Fe_2Se_6]$

## $A_x^{\sf I} \operatorname{Fe}_y Q_z$

Einleitung

Ortho-

Ferrate (n:1:4)

Ferrate(III)

3:1:3 4:2:5

1:1:2 Ferrate(II/I (n:1:2)

Ketten

Cluster

Bänder

Schichten

Zusammen-

fassung

Weitere Fer rate(II/III) Diferrate Cluster

| Kristalle      | S/Se               | grünmetallis                                           | sch-glänzend                                                    |  |  |
|----------------|--------------------|--------------------------------------------------------|-----------------------------------------------------------------|--|--|
| - thotane      | 0/00               | 8                                                      | Sen Branzene                                                    |  |  |
| Verbindur      | g                  | $Rb_{6}[Fe_{2}S_{6}]^{[1]}$                            | Rb <sub>6</sub> [Fe <sub>2</sub> Se <sub>6</sub> ] <sup>[</sup> |  |  |
| Strukturty     | γp                 | Ba <sub>6</sub> [Al <sub>2</sub> Sb <sub>6</sub> ]-Typ |                                                                 |  |  |
| Kristallsys    | tem                | orthorhombisch                                         |                                                                 |  |  |
| Raumgrup       | pe                 | Cmce,                                                  | Cmce, Nr. 64                                                    |  |  |
| Gitter-        | а                  | 1884.36(3)                                             | 1963.70(3)                                                      |  |  |
| parameter      | Ь                  | 695.66(1)                                              | 718.98(3)                                                       |  |  |
| [pm]           | с                  | 1296.09(2)                                             | 1348.40(7)                                                      |  |  |
| Z              |                    | 4                                                      |                                                                 |  |  |
| <i>R</i> -Wert | <i>R</i> 1         | 0.0220                                                 | 0.0264                                                          |  |  |
| Abstände       | $Fe-Q^t$           | 225.2(1)                                               | 237.4(1)                                                        |  |  |
| [pm]           | Fe-Q <sup>br</sup> | 230.0(1)                                               | 242.0(1)                                                        |  |  |
|                | Fe-Fe              | 297.3(1)                                               | 309.8(2)                                                        |  |  |
| CN             | Q                  | 1+6                                                    | , 2+5                                                           |  |  |
|                | Α                  | 5                                                      | . 6                                                             |  |  |

t2-Obergruppe des monoklinen Cs<sub>6</sub>[Ga<sub>2</sub>Se<sub>6</sub>]-Typs



M. Schwarz, M. Haas, C.R., Z. Anorg. Allg. Chem. 639, 360-374 (2013); [2] M. Schwarz, P. Stüble, C.R., Z. Naturforsch. 72b, 529-547 (2017); [3] W. Bronger, U. Ruschewitz, P. Müller, J. Alloys Compd. 187, 95-103, (1992); [4] W. Bronger, U. Ruschewitz, J. Alloys Compd. 198, 177-179, (1993).

# Vergleich: Kristallstrukturen der Chalkogenido-Diferrate $A_6[Fe_2^{III}Q_6]$



## $A_6[Fe_2Q_6]$ : Magnetische Wechselwirkungen



 W. Bronger, H. S. Genin, P. Müller, Z. Anorg. Allg. Chem. 625, 274-278 (1999); [2] S. C. Engelhardt, G. Frisch, F. Emmerling, C.R., Z. Kristallogr. Suppl. 25, (2007); [3] M. Schwarz, P. Stüble, C.R. Z. Naturforsch. 72b, 529-547 (2017).

## Magnetische Wechselwirkungen in Chalkogenido-Metallaten

## $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_Z$

- Einleitung
- Ortho-Ferrate (n:1:4)
- Ferrate(III) 3:1:3
- 4:2:5 1:1:2
- Ferrate(II/III) (n:1:2)
- Ketten Cluster
- Weitere Ferrate(II/III)
- Diferrate
- Cluster
- Schichten
- Zusammenfassung

- starke AFM-Wechselwirkung (J ≈ -20meV)
- hohe Néel-Temperaturen (≫ RT)
- gegenüber HS erniedrigte magnetische Momente μ (?)
- starke (kovalente ?)  $\sigma$  (+ $\pi$  ?)
  - *L*→*M*-Hinbindung
- kontroverse Diskussion der Mechanismen der magnetischen Wechselwirkung →

- 1 direkter Fe-Fe-Austausch ?
  - d<sub>Fe-Fe</sub> in reinem Eisen: 248 pm

## 2 Superaustausch ?



Goodenough-Kanamori-Anderson (GKA) Regeln<sup>[1]</sup> für Superaustausch zwischen HS-d<sup>5</sup>-Ionen

<sup>[1]</sup> J. B. Goodenough, J.-S. Zhou, Struct. Bond., 98, 17-114 (2001).

## (t)DOS, Elektronen- und Spin-Dichten der Rb-Diferrate $Rb_6[Fe_2Q_6]$

 $A_x^{\sf I}\operatorname{Fe}_y Q_z$ 



$$\underbrace{2 \times \operatorname{Fe}^{\operatorname{III}} d^{5}}_{10} + \underbrace{6 \times Qp^{6}}_{36} = 46 \ (23^{\uparrow}, \ 23^{\downarrow})$$

|                                        |                   | Oxido- | Sulfido- | Selenido- |
|----------------------------------------|-------------------|--------|----------|-----------|
| q                                      | Fe                | +1.61  | +1.11    | +0.97     |
|                                        | $Q^{br}$          | -1.32  | -1.08    | -0.99     |
|                                        | $Q^t$             | -1.34  | -1.20    | -1.15     |
| V                                      | Fe                | 10.3   | 11.9     | 13.5      |
| [10 <sup>6</sup> pm <sup>3</sup> ]     | Q <sup>br</sup>   | 18.2   | 32.6     | 29.3      |
|                                        | $Q^t$             | 18.0   | 39.4     | 47.1      |
| $\mu_{Fe}$                             |                   | 3.83   | 3.49     | 3.48      |
| HF* [T]                                |                   | 27.4   | 21.3     | 19.8      |
| <i>Ρ</i> ΒCΡ                           | Fe-Q              | 0.66 - | 0.52 -   | 0.51 -    |
| $[e^{-}/10^{6}  \mathrm{pm}^{3}]$      |                   | 0.85   | 0.58     | 0.55      |
| $\nabla^2 \rho_{\rm BCP} \ [10^{-10}]$ | 5 m <sup>-5</sup> | +12.92 | +3.55    | +2.61     |

AFM, FP-LAPW, PBE-GGA+U, U=4.2/2.0/2.0 eV, 250/126/126 k-Pkte/IBZ. \*: nur Fermi-Kontakt-Anteil

## pDOS und Spin-Dichten der Rb-Diferrate $Rb_6[Fe_2Q_6]$





rate(II/III)

Diferrate Cluster

Bänder

Schichten

Zusammenfassung

M. Schwarz, P. Stüble, C.R., Z. Naturforsch. 72b, 529-547 (2017).

## pDOS und Spin-Dichten der Rb-Diferrate $Rb_6[Fe_2Q_6]$



M. Schwarz, P. Stüble, C.R., Z. Naturforsch. 72b, 529-547 (2017).

## $A_x^{\rm I} {\rm Fe}_y Q_z$

Einleitung

Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3

4:2:5

1:1:2

Ferrate(II/III) (n:1:2)

Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate

Cluster Bänder

Schichten

Zusammenfassung

Ferrate(III)

4:2:5

## Oxido/Sulfido/Selenido-Ferrate(III)



# $K_{4}[Fe_{2}^{III}O_{5}]$ : Kristallstruktur; inkl. Bezug zu Na<sub>4</sub> $[Fe_{2}^{III}O_{5}]$

### $A_x^{|} \operatorname{Fe}_V Q_Z$

rate(II/III)

Diferrate Cluster Bänder Schichten Zusammenfassung

| Eindelteren      |                     |                   |                      |                                                                                              |
|------------------|---------------------|-------------------|----------------------|----------------------------------------------------------------------------------------------|
| Einierung        | Strukturty          | p                 | eigener              |                                                                                              |
| Ortho-           | Kristallsystem      |                   | monoklin             |                                                                                              |
| Ferrate          | Raumgrup            | pe                | P21/c, Nr. 14        |                                                                                              |
| ( <i>n</i> :1:4) | Gitter-             | а                 | 645.91(14)           |                                                                                              |
| Ferrate(III)     | parameter           | Ь                 | 593.69(13)           |                                                                                              |
| 3:1:3            | [pm, <sup>o</sup> ] | с                 | 1003.0(2)            |                                                                                              |
| 4:2:5            |                     | $\beta$           | 103.124(4)           |                                                                                              |
| 1:1:2            | <i>R</i> -Wert      | <i>R</i> 1        | 0.0355               |                                                                                              |
| E+-(11/111)      | Abstände            | $Fe-O^t$          | 183.9                |                                                                                              |
| (n:1:2)          | [pm]                | Fe-O <sup>e</sup> | 191.4-192.7          |                                                                                              |
| Ketten           | CN                  | K(1)              | 6                    |                                                                                              |
| Cluster          |                     | K(2)              | 5                    | K <sub>4</sub> Fe <sub>2</sub> O <sub>5</sub> Na <sub>4</sub> Fe <sub>2</sub> O <sub>5</sub> |
| Weitere Fer-     | Synthese:           | $Fe_2O_3$         | , K, KO <sub>2</sub> | Vergleich der Kristallstrukturen von K Fe O, und Na Fe O                                     |

T<sub>max</sub>=500 °C transparent rubinrot Farbe:

Vergleich der Kristallstrukturen von K<sub>4</sub>Fe<sub>2</sub>O<sub>5</sub> und Na<sub>4</sub>Fe<sub>2</sub>O<sub>5</sub>  $A=Na^{[1]}$ : isomorphe Untergruppe ( $P2_1/n$ ) mit a=2a

G. Frisch, C.R., Z. Naturforsch. 60b, 732-740 (2005); [1]: G. Brachtel, R. Hoppe, Naturwissenschaften 64, 271-272 (1977).
# Rb<sub>4</sub>[Fe<sup>III</sup>O<sub>5</sub>]: Kristallstruktur



G. Frisch, C.R., Z. Kristallogr. 220, 135-141 (2005).

 $A_8[\operatorname{Fe}_4^{\operatorname{III}}\operatorname{S}_{10}]$  (A = Rb, Cs)

#### $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$

Einleitung

Ortho-Ferrate (n:1:4) Ferrate(III)

3:1:3 4:2:5

1:1:2

Ferrate(II/III) (n:1:2)

Ketten Cluster

Weitere Fer-

rate(II/III) Diferrate

Cluster Bänder

Schichten

Zusammenfassung

| Α                   |                    | Rb <sup>[1]</sup> | Cs <sup>[2]</sup> |
|---------------------|--------------------|-------------------|-------------------|
| Strukturty          | р                  | eige              | ner               |
| Kristallsyst        | tem                | trik              | din               |
| Raumgrup            | ре                 | P1, 1             | Vr. 2             |
| Gitter-             | а                  | 744.65(3)         | 767.83(10)        |
| parameter           | Ь                  | 851.21(3)         | 885.57(12)        |
| [pm, <sup>o</sup> ] | с                  | 1042.77(4)        | 1067.7(2)         |
|                     | α                  | 77.990(2)         | 79.013(6)         |
|                     | $\beta$            | 85.244(2)         | 85.151(6)         |
|                     | $\gamma$           | 81.051(2)         | 80.185(6)         |
| Ζ                   |                    | :                 | 1                 |
| <i>R</i> -Wert      | <i>R</i> 1         | 0.0537            | 0.0413            |
| Abstände            | Fe-S <sup>t</sup>  | 222.5             | 223.0             |
| [pm]                | Fe-S <sup>br</sup> | 221.2-231.9       | 222.9-232         |
|                     | Fe(1)-Fe(2)        | 286.9             | 288.7             |
|                     | Fe(2)-Fe(2)        | 279.9             | 284.0             |
| CN                  | S                  | 1+6,              | 2+5/4             |
|                     | A                  | 5,6               | 7, 8              |



M. Schwarz, M. Haas, C.R., Z. Anorg. Allg. Chem. 639, 360-374 (2013);
 M. Schwarz, C.R., Inorg. Chem. 54, 1038-1048 (2015).

#### $A_x^{\rm I} {\rm Fe}_y Q_z$

Einleitung

Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3

4:2:5 1:1:2

Ferrate(II/III)

(n:1:2) Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate

Cluster

Bänder Schichten

Zusammen-

fassung

Ferrate(III)

1:1:2

### Oxido/Sulfido/Selenido-Ferrate(III)



Zusammenfassung

#### ! von isolierten Tetraedern bis zu Tetraeder-Raumnetzen !

#### A[FeO<sub>2</sub>]: vereinfachter Symmetriestammbaum



G. Frisch, Ch. Hirschle, C. Hoch, M. Wendorff, C. R., Z. Kristallogr. Suppl. 20, 102 (2003); G. Frisch, C. R., Z. Naturforsch. 59b, 771-781 (2004); A = K: Z. Tomkowicz, A. Szytula, J. Phys. Chem. Solids 38, 1117-1123 (1977).

## Rb[FeO<sub>2</sub>]: Kristallographische Daten

 $A_x^{\rm I} {\rm Fe}_y Q_z$ 

Einlei

Ortho Ferrat (n:1:4 Ferrat 3:1:3 4:2:5

Ferrat (n:1:2

Kette

Cluste

Weitere rate(II/I Diferrate Cluster Bänder Schichte Zusamn fassung

|                 |                                     |                            |                      |                 | RbFeO <sub>2</sub> (KAI            |
|-----------------|-------------------------------------|----------------------------|----------------------|-----------------|------------------------------------|
|                 | Strukturtyp                         |                            | KAIO <sub>2</sub>    | 20000           | -                                  |
| tung            | Daten                               |                            | Synchrotron          |                 | -                                  |
| H.              |                                     | λ                          | 175.866 pm           | 15000           | -                                  |
| e .             | Indizierung                         |                            | DICVOL               | nsitä           | -                                  |
| )               | Verfeinerung                        | ç.                         | Rietveld, GSAS       | <u>et</u> 10000 | -                                  |
| e(III)          | N <sub>Para</sub> , N <sub>ob</sub> | 5                          | 28, 7500             |                 | -                                  |
|                 | Kristallsyste                       | m                          | orthorhombisch       | 5000            | -                                  |
|                 | Raumgruppe                          | 2                          | <i>Pbca</i> , Nr. 61 |                 | <u> </u>                           |
|                 | Gitter-                             | а                          | 571.659(3)           | 0               |                                    |
|                 | parameter                           | Ь                          | 1150.771(7)          |                 | 20                                 |
| .e(11/111)<br>) | [ <i>pm</i> ]                       | с                          | 1635.99(1)           |                 |                                    |
| n               | $VEZ [10^{-6}]$                     | pm <sup>3</sup> ]          | 1076.235(7)          | 6000            | - 1                                |
| ur.             | Z                                   |                            | 16                   |                 | L I.                               |
|                 | R-Werte                             | R <sub>P</sub>             | 0.0482               |                 |                                    |
| re Fer-         |                                     | R <sub>F<sup>2</sup></sub> | 0.0752               | 4000            | F 🥼                                |
| i/iii)          | Abstände,                           | d <sub>Fe-O</sub>          | 177.2 - 189.3        | ansit           | - 1                                |
| ate             | Winkel                              | d <sub>Rb-O</sub>          | 286.6 - 353.2        | 1 <u>1</u> 2000 | L                                  |
| r               | [pm, <sup>0</sup> ]                 | ∠ <sub>Fe</sub> −0−Fe      | 142.4 - 153.4        | 2000            |                                    |
| er              |                                     |                            |                      |                 |                                    |
| nten            |                                     |                            |                      | 0               | -                                  |
| nmen-           |                                     |                            |                      |                 | united with the state of the state |



S. C. Engelhardt, G. Frisch, F. Emmerling, C.R., Z. Kristallogr. Suppl. 25, (2007); EK: J. Nuss, N. Z. Ali, M. Jansen, Acta Crystallogr. B63, 719-725 (2007).

## Rb[FeO<sub>2</sub>]: Kristallographische Daten

#### $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$

Einleitun

Ferrate(II 3:1:3 4:2:5 1:1:2 Ferrate(II (n:1:2) Ketten Cluster Weitere F rate(II/III

Diferrate

Cluster Bänder Schichten

Zusammenfassung

Ortho-Ferrate (n:1:4)

|      | Strukturtyp                              | KAIO <sub>2</sub>    |
|------|------------------------------------------|----------------------|
| 3    | Daten                                    | Synchrotron          |
|      | $\lambda$                                | 175.866 pm           |
|      | Indizierung                              | DICVOL               |
|      | Verfeinerung                             | Rietveld, GSAS       |
| I)   | N <sub>Para.</sub> , N <sub>obs</sub>    | 28, 7500             |
|      | Kristallsystem                           | orthorhombisch       |
|      | Raumgruppe                               | <i>Pbca</i> , Nr. 61 |
|      | Gitter- a                                | 571.659(3)           |
| /110 | parameter b                              | 1150.771(7)          |
| /,   | [pm] c                                   | 1635.99(1)           |
|      | VEZ [10 <sup>-6</sup> pm <sup>3</sup> ]  | 1076.235(7)          |
|      | Z                                        | 16                   |
|      | R-Werte R <sub>P</sub>                   | 0.0482               |
| er-  | R <sub>F2</sub>                          | 0.0752               |
| )    | Abstände, <i>d</i> <sub>Fe-O</sub>       | 177.2 - 189.3        |
|      | Winkel d <sub>Rb-O</sub>                 | 286.6 - 353.2        |
|      | [pm, <sup>o</sup> ] ∠ <sub>Fe−O−Fe</sub> | 142.4 - 153.4        |
|      |                                          |                      |



S. C. Engelhardt, G. Frisch, F. Emmerling, C.R., Z. Kristallogr. Suppl. 25, (2007); EK: J. Nuss, N. Z. Ali, M. Jansen, Acta Crystallogr. B63, 719-725 (2007).

### Rb[FeO<sub>2</sub>]: <sup>57</sup>Fe-Mößbauer-Spektrum







```
4:2:5
```

1:1:2



Cluster

Weitere Ferrate(II/III)

Diferrate

Cluster Bänder

Schichten

Zusammenfassung



S. C. Engelhardt, G. Frisch, F. Emmerling, C.R., Z. Kristallogr. Suppl. 25, (2007); magn. Strukturen: D. Sheptyakov, N. Z. Ali, M. Jansen J. Phys.: Condens. Matter. 22, 426001 (2010).

# $Cs[Fe^{III}Se_2]$

#### $A_x^{\sf I}\operatorname{Fe}_y Q_z$

#### Einleitung

Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3 4:2:5

#### Ferrate(II/III) (n:1:2) Ketten

Ζ

R-Wert

[pm]

CN

Abstände

Cluster

Weitere Ferrate(II/III)

Diferrate Cluster Bänder

Danuer

Schichten

Zusammenfassung

| Synthese: Cs, FeSe <sub>2</sub> (stöchiometrisch) |        |                       |  |
|---------------------------------------------------|--------|-----------------------|--|
| 1                                                 | max=/( | 00 °C                 |  |
| Strukturtyp                                       |        | TI[FeS <sub>2</sub> ] |  |
| Kristallsystem                                    |        | monoklin              |  |
| Raumgrupp                                         | e      | C2/m, Nr. 12          |  |
| Gitter-                                           | а      | 1392.95(10)           |  |
| konstanten                                        | Ь      | 564.43(3)             |  |
| [pm, <sup>o</sup> ]                               | с      | 737.44(6)             |  |
|                                                   | в      | 119 163(5)            |  |

R1

Fe-Se

Fe-Fe

Se<sup>br</sup>

Cs

Δ

0.0550

235.6 -236.6

283.8

2+4, 2+5

9



P. Stüble, C.R., Z. Anorg. Allg. Chem. 643, 1462-1473 (2017).

## A[Fe<sup>III</sup>(S/Se)<sub>2</sub>]: Kristallstrukturen und physikalische Eigenschaften

 $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$ 

Einleit Ortho-Ferrat (n:1:4) Ferrat 3:1:3 4:2:5

Ferrat (n:1:2) Ketter Cluster veiter rate(II Diferra Cluster Bände

| ung<br>e<br>(III) |                                          | CN(A)=4                         |        |              |              | CN(A)= |       |                     | (A)=9            |
|-------------------|------------------------------------------|---------------------------------|--------|--------------|--------------|--------|-------|---------------------|------------------|
| e(II/III)         | а                                        | b                               | -      |              | <u>c</u>     |        | d     | <b>T</b> / <b>T</b> |                  |
|                   |                                          | Struktur-                       | Raum-  | d [          | pmj          | NB [m  | ms -j | IC/Imax,N           | H <sub>eff</sub> |
|                   | N. (E.C. 17 [1.2]                        |                                 | gruppe | re-3/3e      |              | 0 26   |       | [N]                 | 27.0             |
|                   | Na[Fe5 <sub>2</sub> ]· [-,-]             | Na[FeS <sub>2</sub> ], I        | 1222   | 222.2        | 270          | 0.30   | 0.58  | < ///!              | 27.0             |
| e Fer-            | K[FeS <sub>2</sub> ] <sup>(-,-)</sup>    | K[FeS <sub>2</sub> ], Z         | C2/c   | 223.2, 223.8 | 270.0        | 0.21   | 0.51  | 250/600             | 21.5             |
| /III)             | Rb[FeS <sub>2</sub> ] <sup>[2,3]</sup>   | K[FeS <sub>2</sub> ], 2         | C2/c   | 220, 222     | 271.6        | 0.19   | 0.45  | 190/?               | 19.6             |
| te                | HT-Rb[FeS <sub>2</sub> ] <sup>[4]</sup>  | Cs[FeS <sub>2</sub> ], <b>3</b> | Immm   | 222.1, 222.5 | 271.1, 274.2 |        |       |                     |                  |
|                   | Cs[FeS <sub>2</sub> ] <sup>[2,3,5]</sup> | Cs[FeS <sub>2</sub> ], <b>3</b> | Immm   | 222.6, 223.6 | 269.6, 272.5 | 0.21   | 0.44  | 66/800              | 19.1             |
|                   | K[FeSe <sub>2</sub> ] <sup>[2]</sup>     | K[FeS <sub>2</sub> ], <b>2</b>  | C2/c   | 236.3, 236.9 | 281.5        | 0.34   | 0.44  |                     | 21.8             |
| ten               | Rb[FeSe <sub>2</sub> ] <sup>[6]</sup>    | K[FeS <sub>2</sub> ], <b>2</b>  | C2/c   | 238.3, 238.6 | 283.1        | 0.24   | 0.34  |                     | 21.6             |
|                   | Cs[FeSe_]*                               | $TI[FeS_{2}], 4$                | C2/m   | 235.5, 236.6 | 280.6, 283.8 |        |       |                     |                  |

Schichten Zusammenfassung

H. Boller, H. Blaha, Monath. Chem. **114**, 145 (1983); [2] W. Bronger, A. Kyas, P. Müller, J. Solid State Chem. **70**, 262 (1987);
 W. Bronger, Z. Anorg. Allg. Chem. **359**, 225 (1968); [4] A. A. Smyk, K. A. Sablina, I. T. Kokov Kristallografiya **34**, 757 (1989); [5]
 W. Bronger, P. Müller, J. Less-Common Met. **70**, 253 (1980); [6] Z. Seidov et al., Phys. Rev. B **94** 134414 (2016).

## A[Fe<sup>III</sup>(S/Se)<sub>2</sub>]: Kristallstrukturen und physikalische Eigenschaften



H. Boller, H. Blaha, Monath. Chem. **114**, 145 (1983); [2] W. Bronger, A. Kyas, P. Miller, J. Solid State Chem. **70**, 262 (1987);
 W. Bronger, Z. Anorg. Allg. Chem. **359**, 225 (1968); [4] A. A. Smyk, K. A. Sablina, I. T. Kokov Kristallografiya **34**, 757 (1989); [5]
 W. Bronger, P. Miller, J. Less-Common Met. **70**, 253 (1980); [6] Z. Seidov et al., Phys. Rev. B **94** 134414 (2016).

### (t)DOS von CsFeS<sub>2</sub> und Fazit Oxido/Sulfido/Selenido-Ferrate(III)



Xα-Rechnungen: C. A. Taft, M. Braga, Phys. Rev. B 21, 5802 (1980); [2] A. K. Pant, E. D. Stevens, Phys. Rev. B 37, 1109-1120 (1988).

| A <sup>I</sup> <sub>x</sub> F | e <sub>y</sub> | Qz |
|-------------------------------|----------------|----|
|-------------------------------|----------------|----|

#### Einleitung

Einleitung

Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3

4:2:5

1:1:2

Ferrate(II/III) (n:1:2)

Ketten Cluster

Weitere Ferrate(II/III)

Diferrate

Cluster

Bänder

Schichten

Zusammenfassung

# Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3 4:2:5

1:1:2

### Ferrate(II/III) (n:1:2)

Ketten Cluster

#### Neitere Ferrate(II/III)

Diferrate Cluster Bänder Schichten



#### Weitere Ferrate(II/III)

Diferrate Cluster

Bänder

Schichten



- Danuer
- Schichten
- Zusammenfassung

| $A_X^{I}$ Fe | y Qz |
|--------------|------|
|--------------|------|

#### Einleitung

Einleitung

Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3

4:2:5

1:1:2

Ferrate(II/III) (n:1:2)

Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate

Cluster

Bänder Schichten

Zusammenfassung

# Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3 4:2:5

1:1:2

## Ferrate(II/III) (n:1:2)

Ketten

Cluster

#### Veitere Ferrate(II/III)

Diferrate Cluster Bänder Schichten





# $Na_2[Fe^{II}S_2]$ und $Na_2[Fe^{II}Se_2]$

 $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$ 

 $\frac{\text{Synthese: Pyrit + Na (stöchiom.); } T_{max}=900 \text{ °C}}{\text{Na + Fe + Se } (Q = \text{Se})}$ Kristalle: schwarzglänzende Nadeln

Einleitung Ortho-

Ferrate (n:1:4) Ferrate(III

3:1:3

4:2:5

Ferrate(II

(n:1:2)

Ketten

Cluster

Weitere F rate(II/III Diferrate

Cluster Bänder

Schichten

Zusammen-

fassung

|     | Verbindun      | g                          | Na <sub>2</sub> [Fe <sup>II</sup> S <sub>2</sub> ] | Na <sub>2</sub> [Fe <sup>II</sup> Se <sub>2</sub> ] |
|-----|----------------|----------------------------|----------------------------------------------------|-----------------------------------------------------|
|     | Strukturty     | р                          | K <sub>2</sub> ZnO <sub>2</sub>                    |                                                     |
|     | Kristallsys    | tem                        | orthorh                                            | ombisch                                             |
|     | Raumgrup       | pe                         | Ibam,                                              | Nr. 72                                              |
| )   | Gitter-        | а                          | 643.54(8)                                          | 660.81(1)                                           |
|     | parameter      | Ь                          | 1140.2(2)                                          | 1190.30(2)                                          |
|     | [pm]           | с                          | 562.90(6)                                          | 585.59(1)                                           |
|     |                | V                          | 413.0                                              | 460.6                                               |
| an. | Ζ              |                            |                                                    | 4                                                   |
| ,   | <i>R</i> -Wert | <i>R</i> 1                 | 0.0372                                             | 0.0466                                              |
|     | Abstände       | $\operatorname{Fe-}Q^{br}$ | 234.5(1)                                           | 245.77(3)                                           |
|     | [pm]           | Fe-Fe                      | 281.45(3)                                          | 292.8                                               |
|     | CN             | Q                          | 2                                                  | +5                                                  |
| er- |                | Na                         |                                                    | 5                                                   |
|     |                |                            |                                                    |                                                     |





P. Stüble, S. Peschke, D. Johrendt, C.R., J. Solid State Chem. 258, 416-430 (2018).

# $Na_2[Fe^{II}S_2]$ (und K[Fe^{III}S\_2]): (t)DOS und Spin-Dichten



| d <sub>xy</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>F</b>              |
| s the second sec | <i>p</i> <sub>z</sub> |
| -x+y 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fe<br>x+y             |

K[Fe<sup>III</sup>S<sub>2</sub>]

270.0

+1.017

-0.926

11.9

32.5

3.30

21.3

0.596 - 0.599

# $Na_2[Fe^{II}S_2]$ (und K[Fe^{III}S\_2]): (t)DOS und Spin-Dichten







#### 1:1:2 Ferrate(II/III) (n:1:2)

Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate Cluster

Bänder

Schichten

 $\mathsf{Cs}_3[\mathsf{Fe}^{\mathsf{II}/\mathsf{III}}\mathsf{Se}_2]_2$ 

#### $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$

|     | 1.11    |  |
|-----|---------|--|
| EIN | ieitung |  |
|     |         |  |

| Ortho-           |  |
|------------------|--|
| Ferrate          |  |
| ( <i>n</i> :1:4) |  |

Ferrate(III) 3:1:3 4:2:5

1:1:2

Ferrate(II/III) (n:1:2)

Ketten Cluster

Weitere Ferrate(II/III)

Diferrate

Cluster

Bänder

Schichten

Zusammenfassung

| Synthese: | Cs, FeSe <sub>2</sub> (stöchiometrisch) |
|-----------|-----------------------------------------|
|           | T <sub>max</sub> =800 °C                |

| Strukturtyp    |                    | $Cs_3[FeS_2]_2$      |
|----------------|--------------------|----------------------|
| Kristallsyste  | em                 | orthorhombisch       |
| Raumgruppe     |                    | <i>Pnma</i> , Nr. 62 |
| Gitter-        | а                  | 777.88(6)            |
| konstanten     | Ь                  | 1151.02(6)           |
| [pm]           | с                  | 1341.61(7)           |
| Z              |                    | 4                    |
| <i>R</i> -Wert | <i>R</i> 1         | 0.0470               |
| Abstände       | Fe-Se <sup>t</sup> | 241.3 - 243.7        |
| [pm]           | Fe-Fe              | 279.2/297.3          |
| CN             | Se <sup>br</sup>   | 2+5, 2+7             |
|                | Cs                 | 7                    |
|                |                    | 8                    |



P. Stüble, C.R., Z. Anorg. Allg. Chem. 643, 1462-1473 (2017).

## $A_3$ [Fe<sub>2</sub><sup>II,III</sup>S<sub>4</sub>]: Vergleich der beiden Strukturtypen (beide RG Pnma)





Ferrate (n:1:4)

Ferrate(III) 3:1:3 4:2:5 1:1:2

Ferrate(II/III) (n:1:2)

Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate

Cluster

Bänder

Schichten

Zusammenfassung



a Na<sub>3</sub>[Fe<sub>2</sub>S<sub>4</sub>]-Typ (A = Na, K, Rb;  $\angle_{K-K-K} \approx 140/180^{\circ}$ )

b  $Cs_3[Fe_2S_4]$ -Typ ( $A = Cs; \angle_{K-K-K} \approx 170/180^\circ$ )

A<sub>3</sub>Fe<sub>2</sub>S<sub>4</sub>: W. Bronger, U. Ruschewitz, P. Müller, J. Alloys Compd. 218, 22-27 (1995); MB (A=Na): J. Ensling, P. Gütlich, H. Spiering, K. Klepp Hyperfine Interactions 28, 599-602 (1986); P. Stüble, C.R. Z. Anorg. Allg. Chem. 643, 1462-1473 (2017).

## Kettenferrate(III) und (II/III)

 $A_x^{\sf I} \operatorname{Fe}_y Q_z$ 

Eir Or Fei (*n*: Fei 3: 4:2 1:0 Fei (*n*: Ke CI We rat Di CI Bå Sc

|              |   | Verbindung                                        | Kationen<br>/Fe | r <sup>rel</sup> .<br>[pm] | ECoN(A)    | ∠ <sub>Fe</sub> -Fe-Fe<br>[°] | d <sub>Fe−Fe</sub><br>[pm] | d <sub>Fe – Fe</sub><br>[pm] | $\angle \kappa - \kappa - \kappa$ | $\Delta d$ [pm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|---|---------------------------------------------------|-----------------|----------------------------|------------|-------------------------------|----------------------------|------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| leitung      |   |                                                   | ,<br>,          | 100                        | 0.77       | 100                           | 070                        | 070                          | 100.0                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |   | Na[FeS <sub>2</sub> ] (?)                         | 1 Na            | 102                        | 2.77       | 180                           | 270                        | 270                          | 180.0                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| tho-         |   | K[FeS <sub>2</sub> ]                              | 1 K             | 138                        | 7.89       | 176.7                         | 270                        | 270                          | 180.0                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.4)         |   | Rb[FeS <sub>2</sub> ]                             | 1 Rb            | 152                        | 7.96       | 177.6                         | 271.6                      | 271.6                        | 180.0                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |   | HT-Rb[FeS <sub>2</sub> ]                          | 1 Rb            | 152                        | 7.91       | 180                           | 272.7                      | 271.1                        | 180.0                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rate(III)    |   | -                                                 |                 |                            |            |                               |                            | 274.2                        | 180.0                             | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1:3          |   | Cs[FeS <sub>2</sub> ]                             | 1 Cs            | 167                        | 7.84       | 180                           | 271.1                      | 269.6                        | 180.0                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2:5          |   | -                                                 |                 |                            |            |                               |                            | 272.5                        | 180.0                             | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1:2          |   | Cs[FeSe2]                                         | 1 Cs            |                            |            |                               | 282.2                      | 280.6                        | 180.0                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rate(II/III) | ) |                                                   |                 |                            |            |                               |                            | 283.8                        | 180.0                             | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1:2)         |   | $Na_3[FeS_2]_2$                                   | 1.5 Na          | 153                        | 5.14, 5.65 | 160.6                         | 274.7                      | 274.5                        | 143.0                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| tten         |   |                                                   |                 |                            |            |                               |                            | 274.9                        | 180.0                             | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| uster        |   | $K_3[FeS_2]_2$                                    | 1.5 K           | 207.0                      | 5.73, 5.86 | 159.2                         | 284.2                      | 278.5                        | 140.2                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |   |                                                   |                 |                            |            |                               |                            | 289.8                        | 180.0                             | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| etere Fer-   |   | $Rb_3[FeS_2]_2$                                   | 1.5 Rb          | 228                        | 5.99, 5.88 | 159.1                         | 288.2                      | 281.6                        | 139.9                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| c(11/111)    |   |                                                   |                 |                            |            |                               |                            | 294.8                        | 180.0                             | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |   | $Cs_3[FeS_2]_2$                                   | 1.5 Cs          | 250.5                      | 5.98, 7.05 | 175.3                         | 280.2                      | 277.9                        | 170.8                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| uster        |   |                                                   |                 |                            |            |                               |                            | 282.4                        | 180.0                             | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| inder        |   | Cs <sub>3</sub> [FeSe <sub>2</sub> ] <sub>2</sub> | 1.5 Cs          |                            |            |                               | 288.3                      | 279.2                        | 170.3                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nicricen     |   |                                                   |                 |                            |            |                               |                            | 297.3                        | 180.0                             | 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |   |                                                   |                 |                            |            |                               |                            |                              |                                   | A DESCRIPTION OF A DESC |



#### 1:1:2 Ferrate(II/III) (n:1:2)

Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate Cluster

Bänder

Schichten



#### Ferrate(II/III)

(*n*:1:2) Ketten

1:1:2

Cluster

Weitere Ferrate(II/III)

Diferrate Cluster

Bänder

Schichten

# $Rb_4[Fe^{II,III}S_2]_3$

#### $A_x^{\sf I}\operatorname{Fe}_y Q_z$

| - 1 m | outung |  |
|-------|--------|--|
|       | ennip  |  |
|       |        |  |

Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3

4:2:5

1:1:2

Ferrate(II/III) (n:1:2)

Ketten Cluster

Weitere Ferrate(II/III)

Diferrate Cluster Bänder

Schichten

Zusammenfassung 
 Synthese:
 Rb, Fe, S (stöchiometrisch)

 Tmax=900 °C

 Kristalle:
 dunkelgrün-metallisch glänzende

 Nädelchen

 Fe-OS:
 +2.667 (2×Fe<sup>III</sup>+1×Fe<sup>II</sup>)

| Strukturtyp         |                   | eigener           |
|---------------------|-------------------|-------------------|
| Kristallsyste       | em                | monoklin          |
| Raumgrupp           | e                 | P21/c, Nr. 14     |
| Gitter-             | а                 | 1640.49(12)       |
| konstanten          | Ь                 | 1191.94(9)        |
| [pm, <sup>o</sup> ] | с                 | 743.33(6)         |
|                     | $\beta$           | 94.759(4)         |
| Z                   |                   | 4                 |
| <i>R</i> -Wert      | <i>R</i> 1        | 0.1198            |
| Abstände            | Fe-S <sup>b</sup> | 224.6 - 230.3     |
| [pm]                | Fe(1) - Fe(1)     | 288.4             |
|                     | Fe(1) - Fe(3)     | 278.6             |
|                     | Fe(2) - Fe(2)     | 280.0             |
|                     | Fe(2) - Fe(3)     | 284.2             |
| CN                  | S                 | 2+4 (3×),         |
|                     |                   | 2+5 (3×)          |
|                     | Rb                | 6 [Rb(2)], 7 (3×) |

M. Schwarz, Dissertation, Univ. Freiburg (2015).



# $\mathsf{K}_7[\mathsf{Fe}^{\mathsf{II},\mathsf{III}}\mathsf{S}_2]_5$

#### $A_x^{\sf I}\operatorname{Fe}_y Q_z$

| Finleitung  |       |  |
|-------------|-------|--|
| Finleitiing | _     |  |
|             | E I D |  |
|             |       |  |

Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3 4:2:5 1:1:2

Ferrate(II/III) (n:1:2)

Ketten Cluster

Weitere Ferrate(II/III)

Diferrate Cluster Bänder Schichten

Zusammenfassung

| Synthese:  | K, Fe, S (1.44:1:2.22)          |
|------------|---------------------------------|
|            | T <sub>max</sub> =900 °C        |
| Kristalle: | dunkelgrün-metallisch glänzende |
|            | Nädelchen                       |
| Fe-OS:     | +2.60                           |

|                   | eigener                                                                                            |
|-------------------|----------------------------------------------------------------------------------------------------|
| Kristallsystem    |                                                                                                    |
|                   | C2/c, Nr. 15                                                                                       |
| а                 | 2790.1(3)                                                                                          |
| Ь                 | 1153.74(13)                                                                                        |
| с                 | 720.17(8)                                                                                          |
| β                 | 102.746(8)                                                                                         |
|                   | 4                                                                                                  |
| <i>R</i> 1        | 0.0407                                                                                             |
| Fe-S <sup>b</sup> | 225.6 - 232.8                                                                                      |
| Fe(1)-Fe(2)       | 283.9                                                                                              |
| Fe(2)-Fe(3)       | 277.1                                                                                              |
| Fe(3)-Fe(3)       | 283.9                                                                                              |
| S                 | 2+5, 2+4                                                                                           |
| К                 | 6 [K(1),K(3)], 7                                                                                   |
|                   | a<br>b<br>c<br>$\beta$<br>Fe-S <sup>b</sup><br>Fe(1)-Fe(2)<br>Fe(2)-Fe(3)<br>Fe(3)-Fe(3)<br>S<br>K |



M. Schwarz, M. Haas, C.R., Z. Anorg. Allg. Chem. 639, 360-374 (2013).

K<sub>7.09</sub>[Fe<sup>II,III</sup>S<sub>2</sub>]<sub>4</sub>

#### $A_x^{\sf I}\operatorname{Fe}_y Q_z$

| Einleitun | 1 |
|-----------|---|
| Ortho-    |   |
| Ferrate   |   |
| (n:1:4)   |   |

| - |         | <br>1.5 |
|---|---------|---------|
|   | ot o    |         |
|   | <br>1LC |         |
|   |         |         |

```
3:1:3
4:2:5
```

```
1:1:2
```

| Ferrate(I        | I/ | II | ļ |
|------------------|----|----|---|
| ( <i>n</i> :1:2) |    |    |   |

Ketten

Cluster

| Wei  | tere  | Fei |
|------|-------|-----|
| rate | (11/1 | II) |

Diferrate Cluster

Bänder

Schichten

Zusammenfassung

| Synthese: K, FeS <sub>2</sub> (19:10) |                   |                       |  |  |
|---------------------------------------|-------------------|-----------------------|--|--|
| T <sub>max</sub> =800 °C              |                   |                       |  |  |
| Kristalle: dun                        | kelgrün-m         | netallisch glänzende  |  |  |
| Näc                                   | Nädelchen         |                       |  |  |
| Fe-OS: +2.                            | 22                |                       |  |  |
|                                       |                   |                       |  |  |
| Strukturtyp                           |                   | eigener               |  |  |
| Kristallsystem                        | 1                 | orthorhombisch        |  |  |
| Raumgruppe                            |                   | $C222(00\gamma)00s$ , |  |  |
|                                       |                   | Nr. 21.1.13.2         |  |  |
| q-Vektor                              |                   | 0,0,0.444             |  |  |
| Gitter-                               | а                 | 1363.87(5)            |  |  |
| konstanten                            | Ь                 | 2487.23(13)           |  |  |
| [pm]                                  | с                 | 583.47(3)             |  |  |
| Z                                     |                   | 4                     |  |  |
| <i>R</i> -Werte                       | <i>R</i> 1        | 0.0860/0.1997/0.301   |  |  |
| Abstände                              | Fe-S <sup>b</sup> | 226 - 238             |  |  |
| [pm]                                  | Fe-Fe             | 287 - 300             |  |  |
| CN                                    | К                 | 5-7                   |  |  |



- gemittelte Struktur: Raumgruppe Cccm
- Basisstruktur: C222
- Positionsmodulation der [FeS<sub>2</sub>]-Ketten und der umgebenden K-Positionen (s.o.)
- Besetzungsmodulation von K(51) und K(52)  $\mapsto$  live !!

P. Stüble, C.R., Z. Kristallogr. Suppl. (2018).

## Kettenferrate(III) und (II/III)

 $A_x^{I} \operatorname{Fe}_y Q_z$ 

| X 9 42           | Verbindung                                       | Fe-C             | )S/%              | Struktur-                          | Raum-             | Abstände            |             | MB/mms <sup>-1</sup> |      | $H_{eff}^0$ | J    |
|------------------|--------------------------------------------------|------------------|-------------------|------------------------------------|-------------------|---------------------|-------------|----------------------|------|-------------|------|
|                  |                                                  | Fe <sup>II</sup> | Fe <sup>III</sup> | typ                                | gruppe            | Fe-Q <sup>br.</sup> | Fe-Fe       | δ                    | ΔE   | /T          | /meV |
| Einleitung       | Na[FeS2]                                         | 0                | 100               | Na[FeS2]                           | 1222              | 222.2               | 270         | 0.36                 | 0.58 | 27.0        |      |
|                  | $Na_3[FeS_2]_2$                                  | 50               | 50                | $Na_3[Fe_2S_4]$                    | Pnma              | 228.9/233.5         | 274.6/274.9 | 0.48                 |      | 24.4        |      |
| Ortho-           | $Na_2[FeS_2]$                                    | 100              | 00                | $K_2[ZnO_2]$                       | Ibam              | 234.5               | 281.5       |                      |      |             |      |
| (n:1:4)          | $K[FeS_2]$                                       | 0                | 100               | $K[FeS_2]$                         | C2/c              | 223.2/223.8         | 270.0       | 0.21                 | 0.51 | 21.5        |      |
| ()               | $K_7[FeS_2]_5$                                   | 40               | 60                | eigener                            | $P2_{1}/c$        | 225.6-232.8         | 277.1-283.9 |                      |      |             |      |
| Ferrate(III)     | K <sub>3</sub> [FeS <sub>2</sub> ] <sub>2</sub>  | 50               | 50                | $Na_3[Fe_2S_4]$                    | Pnma              | 228.2-234.6         | 278.5/289.8 |                      |      |             |      |
| 3:1:3            | Rb[FeS <sub>2</sub> ]                            | 0                | 100               | K[FeS <sub>2</sub> ]               | C2/c              | 220/222             | 271.6       | 0.19                 | 0.45 | 19.6        |      |
| 4:2:5            | HT-Rb[FeS <sub>2</sub> ]                         | 0                | 100               | $Cs[FeS_2]$                        | Immm              | 222.1/222.5         | 271.1/274.2 |                      | 0.48 |             | 24.4 |
| 1:1:2            | $Rb_4[FeS_2]_3$                                  | 33               | 67                | eigener                            | $P2_{1}/c$        | 224.6-230.3         | 278.6-288.4 |                      |      |             |      |
| Ferrate(II/III)  | Rb <sub>7</sub> [FeS <sub>2</sub> ] <sub>5</sub> | 40               | 60                | eigener                            | $P2_{1}/c$        |                     |             |                      |      |             |      |
| ( <i>n</i> :1:2) | Rb <sub>3</sub> [FeS <sub>2</sub> ] <sub>2</sub> | 50               | 50                | $Na_3[Fe_2S_4]$                    | Pnma              | 228.8-235.4         | 281.5/294.9 |                      |      |             |      |
| Ketten           | Cs[FeS2]                                         | 0                | 100               | $Cs[FeS_2]$                        | Immm              | 222.6/223.6         | 269.5/272.5 | 0.18                 | 0.46 | 19.1        |      |
| Cluster          | $Cs_3[Fe_2S_4]$                                  | 50               | 50                | $Na_3[Fe_2S_4]$                    | Pnma              | 230.3-231.3         | 277.0/282.4 |                      |      |             |      |
| Weitere Fer-     | Na3[FeSe2]2                                      | 50               | 50                | $Na_3[Fe_2S_4]$                    | Pnma              | 239.5-244.9         | 283.0/283.6 | 0.42                 |      | 22.5        |      |
| rate(II/III)     | Na <sub>2</sub> [FeSe <sub>2</sub> ]             | 100              | 0                 | K <sub>2</sub> [ZnO <sub>2</sub> ] | Ibam              | 245.5               | 292.8       |                      |      |             |      |
| Diferrate        | K[FeSe <sub>2</sub> ]                            | 0                | 100               | $K[FeS_2]$                         | C2/c              | 236.3/236.9         | 281.5       | 0.34                 | 0.44 | 21.8        |      |
| Cluster          | $K_3[FeSe_2]_2$                                  | 50               | 50                | $Na_3[Fe_2S_4]$                    | Pnma              |                     |             |                      |      |             |      |
| Bänder           | Rb[FeSe2]                                        | 0                | 100               | K[FeS2]                            | C2/c              | 238.3/238.6         | 283.1       | 0.24                 | 0.34 | 21.6        |      |
| Schichten        | $Rb_3[FeSe_2]_2$                                 | 50               | 50                | $Na_3[Fe_2S_4]$                    | Pnma              | 243.6               | 280.2/308.3 |                      |      |             |      |
| 7                | Cs[FeSe <sub>2</sub> ]                           | 0                | 100               | $TI[FeS_2]$                        | C2/m <sup>2</sup> | 235.5/236.6         | 280.6/283.8 |                      |      |             |      |
| Zusammen-        | $Cs_3[FeSe_2]_2$                                 | 50               | 50                | $Na_3[Fe_2S_4]$                    | Pnma              | 241.3-243.7         | 279.2/297.3 |                      |      |             |      |

| A <sup>I</sup> <sub>x</sub> F | e <sub>y</sub> | Qz |
|-------------------------------|----------------|----|
|-------------------------------|----------------|----|

#### Einleitung

Einleitung

Ortho-Ferrate (n:1:4)

Ferrate(III)

3:1:3

1:1:2

Ferrate(II/III) (n:1:2)

Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate Cluster

Bänder

Schichten

Zusammenfassung

# Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3 4:2:5

1:1:2

### Ferrate(II/III) (n:1:2)

Ketten

Cluster

#### Veitere Ferrate(II/III)

Diferrate Cluster Bänder Schichten



#### Ferrate(II/III)

(*n*:1:2) Ketten

1:1:2

Cluster

Weitere Ferrate(II/III)

Diferrate Cluster

Bänder

Schichten



#### Ferrate(II/III)

(*n*:1:2) Ketten

1:1:2

Cluster

Weitere Ferrate(II/III)

Diferrate Cluster

Bänder

Schichten

 $Cs_7[Fe_4^{II/III}S_8]^{[1]}$  und  $Cs_7[Fe_4^{II/III}Se_8]^{[2]}$ 

Synthese: Cs<sub>2</sub>S<sub>2</sub>, Fe, S (stöchiom.)

 $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$ 

|                  | $T_{ma}$              | <sub>×</sub> =800 °C                              |                                                    | A COL                                       |                                                                                                     |
|------------------|-----------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                  | Kristalle dun         | kel-grün metallis                                 | ch                                                 | S(4)                                        | 0(0)                                                                                                |
| Einleitung       | glän                  | zend, xenomorpł                                   | h                                                  | Fe(1)                                       | b                                                                                                   |
| Ortho-           |                       |                                                   |                                                    |                                             | 9 (2)                                                                                               |
| Ferrate          |                       |                                                   |                                                    |                                             | f                                                                                                   |
| (n:1:4)          |                       | Cs <sub>7</sub> [Fe <sub>4</sub> S <sub>8</sub> ] | Cs <sub>7</sub> [Fe <sub>4</sub> Se <sub>8</sub> ] | Fe(2)                                       |                                                                                                     |
| Eorrato(IIII)    | Strukturtyp           | Cs <sub>7</sub> [Fe                               | e <sub>4</sub> Te <sub>8</sub> ]                   |                                             |                                                                                                     |
| renate(iii)      | Kristallsystem        | mon                                               | oklin                                              | S(3) e Fe(1                                 | d S(4)                                                                                              |
| 3:1:3            | Raumgruppe            | C2/c,                                             | Nr. 15                                             |                                             | a Cs(4) Cs(3)                                                                                       |
| 4:2:5            | Gitter- a             | 1891.65(7)                                        | 1953.8(1)                                          | S(2)                                        | Cs(4) Cs(4)                                                                                         |
| 1:1:2            | parameter b           | 852.92(3)                                         | 879.71(5)                                          |                                             | S(1)                                                                                                |
| Ferrate(II/III)  | [pm, <sup>o</sup> ] c | 1668.62(6)                                        | 1717.0(1)                                          |                                             | Cs(2)                                                                                               |
| ( <i>n</i> :1:2) | β                     | 117.950(1)                                        | 117.890(2)                                         |                                             | Co(2)                                                                                               |
| Ketten           | z                     | 4                                                 | 4                                                  |                                             | Cs(3)                                                                                               |
| Cluster          | R-Wert R1             | 0.0489                                            | 0.0813                                             |                                             | CS(4)                                                                                               |
| Neitere Fer-     | Abstände Fe-G         | 222.9, 223.0                                      | 234.0, 234.                                        |                                             |                                                                                                     |
| rate(II/III)     | [pm] Fe-G             | 25 <sup>br</sup> 223.0-232.1                      | 245.0-246.9                                        |                                             | B Fe(2                                                                                              |
| Diferrate        | Fe-F                  | e 284.0-288.7                                     | 284.5-287.3                                        |                                             | - 5(4)                                                                                              |
| Cluster          | CN Q                  | 1+7                                               | 7 (t.)                                             | •                                           |                                                                                                     |
| Bänder           |                       | 3+6                                               | (br.)                                              |                                             | $1^{[3]}$ c (c c $1^{[4]}$                                                                          |
| Schichten        | Cs                    | 4+3                                               | bis 8                                              | isotyp: Cs <sub>7</sub> [Fe <sub>4</sub> Ie | $_8$ $_8$ $_7$ $_8$ $_7$ $_8$ $_6$ $_8$ $_8$ $_8$ $_8$ $_7$ $_8$ $_8$ $_8$ $_8$ $_8$ $_8$ $_8$ $_8$ |

S(1)

S(2)

M. Schwarz, C.R., Inorg. Chem. 54, 1038-1048 (2015); [2] P. Stüble, C.R., Z. Anorg. Allg. Chem. 643, 1462-1473 (2017); [3]
 W. Bronger, M. Kimpel, D. Schmitz, Angew. Chem. Int. Ed. 21, 544 (1982); [4] W. Bronger et al. J. Less-Common Met. 167, 161-167 (1990).
# $\mathsf{Cs}_7[\mathsf{Fe}_4^{II/III}\mathsf{S}_8]\text{: berechnete Zustandsdichten}$

 $A_x^{\sf I}\operatorname{Fe}_y Q_z$ 



Schichten

FP-LAPW, PBE-GGA+U, U=2eV, AFM, 864 k-Punkte; M. Schwarz, C.R., Inorg. Chem. 54, 1038-1048 (2015).

 $Rb_7[Fe_4^{II/III}Te_8]$ 

DL

 $A_x^{I} \operatorname{Fe}_y Q_z$ 

fassung

|                              | Synthese:           | кв, ге,             | re (stocniom.)                                        |             |                     | 1e(3)                |          |
|------------------------------|---------------------|---------------------|-------------------------------------------------------|-------------|---------------------|----------------------|----------|
|                              |                     | T <sub>max</sub> =9 | 00 °C                                                 | Te(3)       | 15                  | a                    |          |
| Einleitung                   | Kristalle:          | (Spuren<br>xenomor  | von Rb <sub>2</sub> Te <sub>3</sub> )<br>ph, schwarz- | Fe(1)       | Fe(2)               | Fe(1)                |          |
| Ortho-<br>Ferrate<br>(n:1:4) |                     | metalliso           | ch glänzend                                           | Te(2)       | 900 Fe(2<br>Te(4) e | Te(2)                |          |
| Eorrate(III)                 | Strukturty          | /p                  | Cs <sub>7</sub> [Fe <sub>4</sub> Te <sub>8</sub> ]    | Rb(4)       | Rb(3) Bb(4)         | Te(4)                |          |
| 2:1:2                        | Kristallsys         | stem                | monoklin                                              | PH(4)       | Ph(4)               | Rb(4)                |          |
| 3:1:3                        | Raumgrup            | ppe                 | C2/c, Nr. 15                                          | HD(4) Te(3) | HD(4)               | P <sup>(10)</sup> 3) | 1        |
| 4.2.5                        | Gitter-             | а                   | 2000.16(7)                                            |             | Fel2                | Rb(2)                |          |
| 1:1:2                        | parameter           | ь                   | 897.79(3)                                             |             | Re(1)               | Rb(2)                | 1        |
| Ferrate(II/III)              | [pm, <sup>0</sup> ] | с                   | 1768.12(6)                                            | Te 1        | Te(3)               |                      |          |
| ( <i>n</i> :1:2)             |                     | $\beta$             | 117.4995(10)                                          |             | Rb(3)               | a a                  | 6        |
| Ketten                       | Z                   |                     | 4                                                     |             | Rb(4)               | Rb(4)                |          |
| Cluster                      | <i>R</i> -Wert      | <i>R</i> 1          | 0.0296                                                |             |                     |                      | <i>.</i> |
| Weitere Fer-                 | Abstände            | Fe-Te <sup>t</sup>  | 255.1, 256.4                                          |             |                     | <b>(</b>             | •        |
| rate(II/III)                 | [pm]                | Fe-Te <sup>br</sup> | 263.2-265.2                                           |             |                     |                      |          |
| Diferrate                    |                     | Fe-Fe               | 279.7-283.5                                           |             |                     |                      | 17       |
| Cluster                      | CN                  | Te                  | 1+7 (t.)                                              |             |                     |                      | ľ        |
| Bänder                       |                     |                     | 3+5 (br.)                                             |             |                     |                      | Ļ        |
| Schichten                    |                     | Rb                  | 4+1 bis 8                                             |             |                     |                      |          |
| 7                            | 1ECoN               | Rb                  | 4.86 - 7.52                                           |             |                     |                      |          |

2.11.2 ١ To(1)

0----

•• Rb(3)

Rb(4) 👴 😐 Rb(4)

8

P. Stüble, A. Berroth, C.R., Z. Naturforsch. 71 485-501 (2016).



### Ferrate(II/III)

(*n*:1:2) Ketten

1:1:2

Cluster

Weitere Ferrate(II/III)

Diferrate Cluster

Bänder

Schichten



### 1:1:2 Ferrate(II/III)

(*n*:1:2) Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate

Cluster Bänder

Schichten

 $\mathsf{RT}\text{-}\mathsf{K}_7[\mathsf{Fe}_4^{\mathsf{II}/\mathsf{III}}\mathsf{Te}_8]$ 

### $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$

| Einleitung       |
|------------------|
| Ortho-           |
| Ferrate          |
| ( <i>n</i> :1:4) |
| Ferrate(III)     |

3:1:3 4:2:5 1:1:2

Ferrate(II/III) (n:1:2)

Ketten Cluster

Weitere Ferrate(II/III)

Diferrate Cluster Bänder

Schichten

Zusammenfassung

| Synthese:<br>Kristalle: | K, Fe, T<br><i>T</i> <sub>max</sub> =8<br>trigonal-<br>gold-glär | e (stöchiom.)<br>00 °C<br>prismatisch<br>nzender Bruch |
|-------------------------|------------------------------------------------------------------|--------------------------------------------------------|
| Strukturty              | p                                                                | eigener                                                |
| Kristallsys             | tem                                                              | tetragonal                                             |
| Raumgrup                | pe                                                               | P4 <sub>2</sub> /nmc                                   |
|                         |                                                                  | Nr. 137                                                |
| Gitter-                 | а                                                                | 1222.25(14)                                            |
| parameter               | с                                                                | 872.1(2)                                               |
| [pm]                    |                                                                  |                                                        |
| Z                       |                                                                  | 2                                                      |
| <i>R</i> -Wert          | <i>R</i> 1                                                       | 0.0583                                                 |
| Abstände                | Fe-Te <sup>t</sup>                                               | 256.3                                                  |
| [pm]                    | Fe-Te <sup>br</sup>                                              | 263.0-265.2                                            |
|                         | Fe-Fe                                                            | 279.3-282.1                                            |
| CN                      | Te                                                               | 1+6 (t.)                                               |
|                         |                                                                  | 3+4 (br.)                                              |
|                         | К                                                                | 4+2 bis 8                                              |
| 1ECoN                   | К                                                                | 2.88 - 4.35                                            |



P. Stüble, A. Berroth, C.R., Z. Naturforsch. 71b, 485-501 (2016).

 $\mathsf{TT}\text{-}\mathsf{K}_7[\mathsf{Fe}_4^{\mathsf{II}/\mathsf{III}}\mathsf{Te}_8]$ 

### $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$

| Einleitung       |
|------------------|
| Ortho-           |
| Ferrate          |
| ( <i>n</i> :1:4) |
| Ferrate(III)     |

| 3:1:3 |  |
|-------|--|
| 4:2:5 |  |
|       |  |

Ferrate(II/III) (n:1:2)

Ketten

Cluster

Weitere Ferrate(II/III) Diferrate

Cluster Bänder

Schichten

Zusammenfassung Synthese: Umwandlung der RT-Form bei *T*=100 K

| Strukturty     | /p                  | eigener        |
|----------------|---------------------|----------------|
| Kristallsys    | tem                 | orthorhombisch |
| Raumgrup       | pe                  | Pbcn, Nr. 60   |
| Gitter-        | а                   | 1715.5         |
| parameter      | ь                   | 866.76(3)      |
| [pm]           | с                   | 1715.50(7)     |
| Z              |                     | 4              |
| <i>R</i> -Wert | <i>R</i> 1          | 0.0160         |
| Abstände       | Fe-Te <sup>t</sup>  | 255.9, 257.6   |
| [pm]           | Fe-Te <sup>br</sup> | 262.4-267.7    |
|                | Fe-Fe               | 268.5-286.5    |
| CN             | Te                  | 1+6 (t.)       |
|                |                     | 3+5, 3+6 (br.) |
|                | К                   | 4+2 bis 6+1    |
| 1ECoN          | К                   | 2.46 bis 4.00  |



P. Stüble, A. Berroth, C.R., Z. Naturforsch. 71b 485-501 (2016).

## Symmetriestammbaum für die Cluster-Ferrate $A_7$ [Fe<sub>4</sub> $Q_8$ ]



M. Schwarz, C.R., Inorg. Chem. 54, 1038-1048 (2015); P. Stüble, A. Berroth, C.R., Z. Naturforsch. 71 485-501 (2016).



### 1:1:2 Ferrate(II/III)

(*n*:1:2) Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate

Cluster Bänder

Schichten



### 1:1:2 Ferrate(II/III)

(*n*:1:2) Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate Cluster

Bänder

Schichten

 ${\sf K}_6[{\sf Fe}_4^{{\sf II}/{\sf III}}{\sf Se}_8]$ 

# $A_{X}^{\mathsf{I}}\operatorname{Fe}_{Y}Q_{Z}$

| - |   |        |   |
|---|---|--------|---|
|   | n | errin  | σ |
| _ |   | cicuit | 8 |

Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3 4:2:5

1:1:2

Ferrate(II/III) (n:1:2)

к

Ketten Cluster

Weitere Ferrate(II/III)

Diferrate Cluster Bänder

Schichten

Zusammenfassung

| Synthese: aus<br><i>T</i> ma:<br>(mit<br>und<br><u>Kristalle:</u> gold | Probe $K_7Fe_4Se_8$<br>$_{\rm c}$ =800 °C<br>$K_9Fe_2Se_7$ , KFeSe $_2$<br>$K_3Fe_2Se_4$ )<br>ene Plättchen |               |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------|
| Strukturtyp                                                            | eigener                                                                                                     |               |
| Kristallsystem                                                         | orthorhombisch                                                                                              |               |
| Raumgruppe                                                             | <i>Pbcn</i> , Nr. 60                                                                                        |               |
| Gitter- a                                                              | 1632.62(6)                                                                                                  |               |
| parameter b                                                            | 821.10(3)                                                                                                   |               |
| [pm, <sup>o</sup> ] c                                                  | 1592.75(6)                                                                                                  |               |
| Z                                                                      | 4                                                                                                           |               |
| R-Wert R1                                                              | 0.0540                                                                                                      |               |
| Abstände Fe-S                                                          | e <sup>t</sup> 230.7, 232.0                                                                                 |               |
| [pm] Fe-S                                                              | e <sup>br</sup> 239.8-246.8                                                                                 |               |
| Fe-F                                                                   | e 281.9-286.4                                                                                               | D K(3) K(1) C |
| CN Se                                                                  | 1+5, 1+6 (t.)                                                                                               | 1             |
|                                                                        | 3+5, 3+6 (br.)                                                                                              |               |

P. Stüble, A. Berroth, C.R., Z. Naturforsch. 71b 485-501 (2016).

5+1 bis 7



### 1:1:2 Ferrate(II/III)

(*n*:1:2) Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate Cluster

Bänder

Schichten



### 1:1:2 Ferrate(II/III)

(*n*:1:2) Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate Cluster

Bänder

Schichten

 $(\mathsf{K}/\mathsf{Rb})_{6\text{-7}}[\mathsf{Fe}_4^{\mathsf{II}/\mathsf{III}}\mathsf{Se}_8]$ 

### $A_x^{\rm I} {\rm Fe}_y Q_z$

Einleitung

Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3 4:2:5

1:1:2

Ferrate(II/III) (n:1:2)

Ketten

Cluster

Weitere Ferrate(II/III) Diferrate Cluster

Bänder

Schichten

Zusammenfassung  $\frac{\text{Synthese:}}{T_{\text{max}}=800 \text{ °C}} \text{K/Rb, Fe, S bzw. Se (stöchiom.)}$ 

|                     |                     | $Rb_6[Fe_4Se_8]$    | $Rb_7[Fe_4Se_8]$                 |
|---------------------|---------------------|---------------------|----------------------------------|
| Strukturt           | уp                  | Cs <sub>7</sub> [Fe | e <sub>4</sub> Te <sub>8</sub> ] |
| Kristallsys         | stem                | mon                 | oklin                            |
| Raumgrup            | ope                 | C2/c,               | Nr. 15                           |
| Gitter-             | а                   | 1908.10(8)          | 1890.2(2)                        |
| paramete            | rb                  | 844.77(3)           | 847.16(8)                        |
| [pm, <sup>o</sup> ] | с                   | 1641.65(6)          | 1654.5(2)                        |
|                     | $\beta$             | 117.823(3)          | 1118.001(5)                      |
|                     | V                   | 2340.28             | 2339.23                          |
| Ζ                   |                     | 4                   | 1                                |
| <i>R</i> -Wert      | <i>R</i> 1          | 0.0744              | 0.182                            |
| Abstände            | Fe-Se <sup>t</sup>  | 230.7, 231.2        | 232.1, 233.7                     |
| [pm]                | Fe-Se <sup>br</sup> | 241.3-247.9         | 241.1-246.6                      |
|                     | Fe-Fe               | 285.5-289.1         | 281.4-285.7                      |
| CN                  | Se                  | 1+7                 | 7 (t.)                           |
|                     |                     | 3+6                 | (br.)                            |
|                     | Rb                  | 4+3                 | bis 8                            |



## Vergleich der Cluster in den Ferraten $A_{6/7}$ [Fe<sub>4</sub> $Q_8$ ]

 $A_x^{I} \operatorname{Fe}_y Q_z$ 

Einleitung

Ortho-Ferrate (n:1:4)

Ferrate(III)

3:1:3

4:2:5

1:1:2

Ferrate(II/III) (n:1:2)

Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate Cluster

Bänder

Schichten

Zusammenfassung



| Verbindung                                                          | n       |                   | <i>d</i> [pm]      |              | V <sub>7</sub>  | etraeder/TS [1    | .0 <sup>6</sup> pm <sup>3</sup> ] |
|---------------------------------------------------------------------|---------|-------------------|--------------------|--------------|-----------------|-------------------|-----------------------------------|
|                                                                     |         | Fe-Q <sup>t</sup> | Fe-Q <sup>br</sup> | Fe-Fe        | Fe <sub>4</sub> | Fe <sub>3</sub> Q | $[Fe_4^{} Q_4^{}]^{n+}$           |
| Cs <sub>7</sub> [Fe <sub>4</sub> S <sub>8</sub> ] <sup>[1]</sup>    | +1      | 222.1, 222.6      | 232.8-235.9 (3)    | 280.4-283.4  | 2.625           | 1.930, 1.925      | 10.34                             |
| Cs <sub>3</sub> [Fe <sub>2</sub> S <sub>4</sub> ]                   |         | -                 | 230.3-231.3 (2)    | 277.0, 282.4 | -               | -                 | -                                 |
| K <sub>6</sub> [Fe <sub>4</sub> Se <sub>8</sub> ] <sup>[2]</sup>    | +2      | 230.7, 232.0      | 239.7-246.6 (3)    | 281.9-286.5  | 2.708           | 2.109, 2.105      | 11.14                             |
| K <sub>3</sub> [Fe <sub>2</sub> Se <sub>4</sub> ] <sup>[4]</sup>    |         | -                 | 240.7, 246.5 (2)   | 286.5, 301.5 | -               | -                 | -                                 |
| Rb <sub>6</sub> [Fe <sub>4</sub> Se <sub>8</sub> ]*                 | +2      | 230.7, 231.2      | 231.3-247.9 (3)    | 285.5-289.1  | 2.777           | 2.130,            |                                   |
| Rb <sub>7</sub> [Fe <sub>4</sub> Se <sub>8</sub> ]*                 | +1      | 232.1, 233.7      | 241.1-246.6 (3)    | 281.4-285.7  |                 |                   |                                   |
| RT-K <sub>7</sub> [Fe <sub>4</sub> Te <sub>8</sub> ] <sup>[2]</sup> | $^{+1}$ | 256.3             | 263.0, 265.2 (3)   | 279.3-282.1  | 2.569           | 2.372             | 12.06                             |
| TT-K <sub>7</sub> [Fe <sub>4</sub> Te <sub>8</sub> ] <sup>[2]</sup> | +1      | 255.9, 257.6      | 262.4-267.7 (3)    | 268.5-286.5  | 2.619           | 2.327, 2.372      | 12.02                             |
| Rb <sub>7</sub> [Fe <sub>4</sub> Te <sub>8</sub> ] <sup>[2]</sup>   | +1      | 255.1, 256.4      | 263.2-265.7 (3)    | 279.7-283.5  | 2.654           | 2.397, 2.389      | 12.23                             |
| Cs <sub>7</sub> [Fe <sub>4</sub> Te <sub>8</sub> ] <sup>[3]</sup>   | $^{+1}$ | 256.0, 256.0      | 263.5-265.7 (3)    | 284.1-285.3  | 2.721           | 2.423, 2.431      | 12.43                             |

M. Schwarz, C.R., Inorg. Chem. 54, 1038-1048 (2015); [2] P. Stüble, A. Berroth, C.R., Z. Naturforsch. 71b 485-501 (2016); [3]
 W. Bronger, M. Kimpel, D. Schmitz, Angew. Chem. Int. Ed. 21, 544 (1982); [4] W. Bronger, H. Genin, P. Müller, Z. Anorg. Allg. Chem. 625, 274-278 (1999).

## Strukturfeld: Ketten- und Cluster-Ferrate



P. Stüble, C.R., Z. Anorg. Allg. Chem. 643, 1462-1473 (2017).

| $A_x^{I}Fe_y Q_z$          | Einleitung                       |
|----------------------------|----------------------------------|
| Einleitung                 | Ortho-Ferrate (n:1:4)            |
| Ortho-<br>Ferrate          | Ferrate(III)<br>3:1:3            |
| Ferrate(III)               | 4:2:5                            |
| 4:2:5<br>1:1:2             | Ferrate(II/III) ( <i>n</i> :1:2) |
| Ferrate(II/III)<br>(n:1:2) | Ketten                           |
| Ketten<br>Cluster          | Weitere Ferrate(II/III)          |
| rate(II/III)               | Diferrate                        |
| Cluster                    | Cluster                          |
| Bänder                     | Bänder                           |
| Schichten                  | Schichten                        |
| Zusammen-<br>fassung       | Zusammenfassung                  |

# $\mathsf{Na}_7[\mathsf{Fe}_2^{\mathsf{II},\mathsf{III}}\mathsf{S}_6]$

### $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$

Einleitur Ortho-Ferrate (n:1:4)

Ferrate(1 3:1:3 4:2:5 1:1:2 Ferrate(1 (n:1:2)

Ketten Cluster Weitere rate(II/II

> Diferrate Cluster Bänder Schichten

Zusamm fassung

|        | bynenese. H         | u, i jiii (                                                                          | Stoemonethiser                            |  |  |  |
|--------|---------------------|--------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
|        | Т                   | max=800                                                                              | °C                                        |  |  |  |
| g      | Strukturtyp         |                                                                                      | eigener                                   |  |  |  |
|        | Kristallsyste       | em                                                                                   | triklin                                   |  |  |  |
|        | Raumgrupp           | e                                                                                    | <i>P</i> 1, Nr. 2                         |  |  |  |
|        | Gitter-             | а                                                                                    | 764.15(2)                                 |  |  |  |
|        | konstanten          | Ь                                                                                    | 1153.70(2)                                |  |  |  |
| 11)    | [pm, <sup>o</sup> ] | с                                                                                    | 1272.58(3)                                |  |  |  |
|        |                     | α                                                                                    | 62.3325(7)                                |  |  |  |
|        |                     | β                                                                                    | 72.8345(8)                                |  |  |  |
|        |                     | $\gamma$                                                                             | 84.6394(8)                                |  |  |  |
| I/III) | Ζ                   |                                                                                      | 3                                         |  |  |  |
|        | <i>R</i> -Wert      | <i>R</i> 1                                                                           | 0.0185                                    |  |  |  |
|        | Abstände            | Fe-S <sup>t</sup> .                                                                  | 227.7 - 230.8                             |  |  |  |
|        | [pm]                | Fe–S <sup>br</sup>                                                                   | 231.8 - 239.3                             |  |  |  |
| Fer-   |                     | Fe-Fe                                                                                | 279.5, 290.4                              |  |  |  |
| I)     | CN                  | S <sup>br</sup> .                                                                    | 2+4, 2+5                                  |  |  |  |
|        |                     | S <sup>term.</sup>                                                                   | 1+6, 1+7                                  |  |  |  |
|        |                     | Na                                                                                   | 4+1 (2×)                                  |  |  |  |
|        |                     |                                                                                      | 5 (6×)                                    |  |  |  |
|        |                     |                                                                                      | 6 (3×)                                    |  |  |  |
|        | Gitterenergi        | e. Fe <sup>ll</sup> /Fe                                                              | <sup>III .</sup> 95 bis 118               |  |  |  |
| en-    | ditterenergi        | <u>σünstia</u>                                                                       | er als Fe <sup>ll</sup> /Fe <sup>ll</sup> |  |  |  |
|        |                     | gunstiger als Fe <sup>rr</sup> /Fe <sup>rr</sup> + Fe <sup>rr</sup> /Fe <sup>r</sup> |                                           |  |  |  |

Synthese: Na Pyrit (stöchiometrisch)



P. Stüble, S. Peschke, D. Johrendt, C.R., J. Solid State Chem. 258, 416-430 (2018).

# $Na_7[Fe_2^{II,III}S_6]$

### $A_x^{|}\operatorname{Fe}_y Q_z$

|                  | Synthese: Na, Pyrit (stochlometrisch)              |                          |                   |  |
|------------------|----------------------------------------------------|--------------------------|-------------------|--|
|                  | Т                                                  | T <sub>max</sub> =800 °C |                   |  |
| Einleitung       | Strukturtyp                                        |                          | eigener           |  |
| Ortho            | Kristallsyste                                      | Kristallsystem           |                   |  |
| Ferrate          | Raumgrupp                                          | e                        | <i>P</i> 1, Nr. 2 |  |
| ( <i>n</i> :1:4) | Gitter-                                            | а                        | 764.15(2)         |  |
| Earrate(III)     | konstanten                                         | Ь                        | 1153.70(2)        |  |
| renate(iii)      | [pm, <sup>o</sup> ]                                | с                        | 1272.58(3)        |  |
| 3:1:3            |                                                    | $\alpha$                 | 62.3325(7)        |  |
| 4:2:5            |                                                    | $\beta$                  | 72.8345(8)        |  |
| 1:1:2            |                                                    | $\gamma$                 | 84.6394(8)        |  |
| Ferrate(II/III)  | Ζ                                                  |                          | 3                 |  |
| ( <i>n</i> :1:2) | <i>R</i> -Wert                                     | <i>R</i> 1               | 0.0185            |  |
| Ketten           | Abstände                                           | Fe-S <sup>t</sup> .      | 227.7 - 230.8     |  |
| Cluster          | [pm]                                               | Fe–S <sup>br</sup>       | 231.8 - 239.3     |  |
| Weitere Fer-     |                                                    | Fe-Fe                    | 279.5, 290.4      |  |
| rate(II/III)     | CN                                                 | S <sup>br</sup> .        | 2+4, 2+5          |  |
| Diferrate        |                                                    | S <sup>term</sup> .      | 1+6, 1+7          |  |
| Cluster          |                                                    | Na                       | 4+1 (2×)          |  |
| Bänder           |                                                    |                          | 5 (6×)            |  |
| Schichten        |                                                    |                          | 6 (3×)            |  |
| Zusammen-        | Gitterenergi                                       | e: Fe <sup>II</sup> /Fe  |                   |  |
| fassung          | günstiger als Fe <sup>ll</sup> /Fe <sup>ll</sup> - |                          |                   |  |



 $J/mol Fe_2S_6$ + Fe<sup>III</sup>/Fe<sup>III</sup> günstiger als Fe<sup>II</sup>/Fe

P. Stüble, S. Peschke, D. Johrendt, C.R., J. Solid State Chem. 258, 416-430 (2018).

## Na<sub>7</sub>[Fe<sup>11,111</sup>S<sub>6</sub>]: magnetische Suszeptibilität



P. Stüble, S. Peschke, D. Johrendt, C.R., J. Solid State Chem. 258, 416-430 (2018); [2] S. Subramanian, E. C. Duin, S. E. J.
 Fawcett, F. A. Amstrong, J. Meyer, M. K. Johnson, J. Am. Chem. Soc. 137, 4567-4580 (2015); [3] A. T. P. Carvalho, M. Swart, Chem. Inform. Model. 54, 613-620 (2014).

## Na<sub>7</sub>[Fe<sup>II,III</sup>S<sub>6</sub>]: magnetische Suszeptibilität





Ferrate (*n*:1:4)

Ferrate(III) 3:1:3 4:2:5

1:1:2

#### Ferrate(II/III) (n:1:2)

Ketten

### Weitere Ferrate(II/III)

- Diferrate
- Cluster
- Bänder
- Schichten



- Curie-Weiss-Fit:  $\mu_{\text{eff}} = 7.453(2) \ \mu_{\text{B}}/[\text{Fe}_2\text{S}_6]$
- $\label{eq:product} \begin{array}{l} \text{"spin-only" für S} = \frac{9}{2} \; (1 \times \text{HS-Fe}^{\text{III}} + 1 \times \text{HS-Fe}^{\text{III}}): \\ \mu_{\text{eff}} = 2 \sqrt{\frac{5}{2} (\frac{5}{2} + 1) + \frac{4}{2} (\frac{4}{2} + 1)} \mu_{\text{B}} = 7.68 \mu_{\text{B}} \end{array}$
- $\blacksquare \ \mapsto \ \mathsf{valenz-delokalisierter} \ \mathsf{FM} \ \mathsf{HS-Situation}$
- einziges analoges Beispiel: Cys56Ser- bzw.
  Cys60Ser-Mutanten des [Fe<sub>2</sub>S<sub>2</sub>]-Ferredoxin aus Clostridium pasteurianum<sup>[2]</sup>
- idealer SO-Wert <u>hier</u> (FM) → Die Spin-Reduktion bei <u>allen anderen</u> kondensierten Ferraten ist auf die AFM-Spinordnung im Anion zurückzuführen.

<sup>[1]</sup> P. Stüble, S. Peschke, D. Johrendt, C.R., J. Solid State Chem. 258, 416-430 (2018); [2] S. Subramanian, E. C. Duin, S. E. J. Fawcett, F. A. Armstrong, J. Meyer, M. K. Johnson, J. Am. Chem. Soc. 137, 4567-4580 (2015); [3] A. T. P. Carvalho, M. Swart, Chem. Inform. Model. 54, 613-620 (2014).

## Na<sub>7</sub>[Fe<sup>11,111</sup>S<sub>6</sub>]: magnetische Suszeptibilität



 P. Stüble, S. Peschke, D. Johrendt, C.R., J. Solid State Chem. 258, 416-430 (2018); [2] S. Subramanian, E. C. Duin, S. E. J.
 Fawcett, F. A. Armstrong, J. Meyer, M. K. Johnson, J. Am. Chem. Soc. 137, 4567-4580 (2015); [3] A. T. P. Carvalho, M. Swart, Chem. Inform. Model. 54, 613-620 (2014).

# $Na_7[Fe_2^{II,III}S_6]$ (+ $Na_6[Fe_2^{III}S_6]$ ): Zustands- und Spindichten



P. Stüble, S. Peschke, D. Johrendt, C.R., J. Solid State Chem. 258, 416-430 (2018).

| $A_{X}^{ }Fe_{Y}\mathcal{Q}_{Z}$ | Einleitung              |
|----------------------------------|-------------------------|
|                                  | Ortho Ferrate $(n:1:4)$ |
| Einleitung                       | Ortho-renate (n.1.4)    |
| Orthe                            | Ferrate(III)            |
| Ferrate                          |                         |
| ( <i>n</i> :1:4)                 | 3:1:3                   |
| Ferrate(III)                     | 4:2:5                   |
| 3:1:3                            | 1.1.2                   |
| 4:2:5                            |                         |
| 1:1:2                            | Ferrate(II/III) (n:1:2) |
| Ferrate(II/III)                  | Ketten                  |
| ( <i>n</i> :1:2)                 | Cluster                 |
| Ketten                           | Cluster                 |
| Cluster                          | Weitere Ferrate(11/111) |
| Weitere Fer-                     | Weitere Ferrate(II/III) |
| rate(II/III)                     | Diferrate               |
| Diferrate                        | Cluster                 |
| Cluster                          | Bänder                  |
| Bänder                           |                         |
| Schichten                        | Schichten               |
| Zusammen-                        | 7                       |
| tassung                          | Lusammentassung         |
|                                  |                         |

 $\mathsf{K}_{15}[\mathsf{Fe}_3^{\mathsf{II}/\mathsf{III}}\mathsf{Te}_7]_2(\mathsf{Te})$ 

IZ E. T. (-17-1-1----)

### $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$

Eir Or Fei (*n*: Fei 3: 4:3 1:0 Fei (n: Ke CI We rat Di CI Ba Sc Zusammenfassung

|              | Synthese:      | п, ге, т            | e (stochiom.) |                                                                       |                                                       |   |
|--------------|----------------|---------------------|---------------|-----------------------------------------------------------------------|-------------------------------------------------------|---|
|              |                | T <sub>max</sub> =8 | 00 °C         | Te(3)                                                                 | · · · · · · · · · · · · · · · · · · ·                 |   |
| leitung      | Kristalle:     | dunkel-g            | old glänzend  |                                                                       |                                                       |   |
| the          |                |                     |               | Te(2)                                                                 |                                                       |   |
| rate         | Strukturty     | /p                  | eigener       |                                                                       |                                                       |   |
| 1:4)         | Kristallsys    | stem                | kubisch       | Fe Fe                                                                 |                                                       |   |
| rate(III)    | Raumgrup       | pe                  | Pa3, Nr. 205  |                                                                       |                                                       | ) |
| 1:3          | Gitter-        | а                   | 1709.02(5)    | Te(3) Te(2) Te(3)                                                     |                                                       |   |
| 2:5          | parameter      |                     |               | a                                                                     |                                                       |   |
| 1:2          | [pm]           |                     |               |                                                                       |                                                       |   |
| rate(11/111) | Z              |                     | 4             | K(4)                                                                  |                                                       |   |
| 1:2)         | <i>R</i> -Wert | R1                  | 0.0594        | Te(3)                                                                 |                                                       |   |
| tten         | Abstände       | Fe-Te <sup>r</sup>  | 256.3         |                                                                       |                                                       |   |
| uster        | [pm]           | Fe-Te <sup>br</sup> | 262.3-265.0   | Te(2)                                                                 |                                                       |   |
|              |                | Fe-Fe               | 282.8         |                                                                       |                                                       |   |
| e(II/III)    | CN             | Te                  | 1+7 (t.)      | R(4) K(4)                                                             |                                                       |   |
| ferrate      |                |                     | 2+8 (br.)     | D                                                                     | С                                                     |   |
| ister        |                |                     | 3+6 (br.)     | •                                                                     |                                                       |   |
| inder        |                | К                   | 6 bis /       | 1                                                                     |                                                       |   |
| hichten      |                | k                   | ([FeaTeala    | $(Te) \longrightarrow 15 \text{ K}^+ + [Fe_2^{2 \times II/III} Te_2]$ | $1^{6-} + [Fe_2^{1/2 \times 11} Te_7]^{7-} + Te^{2-}$ |   |
|              |                |                     | 151 3 - 712   | ( ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )                               | 1 1 3 71 12                                           |   |

P. Stüble, A. Berroth, C.R., Z. Naturforsch. 71b, 485-501 (2016); K. O. Klepp, H. Boller XI. Int. Conf. on Solid Compounds of Transition Elements, P-129 (1991).

| $A_{\chi}^{ }Fe_{y}\mathcal{Q}_{z}$ | Einleitung              |
|-------------------------------------|-------------------------|
|                                     | Ortho Exercto (n:1:4)   |
| Finleitung                          | Ortho-Ferrate (n.1.4)   |
| Lincitang                           | Equate(111)             |
| Ortho-                              | Ferrate(III)            |
| Ferrate<br>(n:1:4)                  | 3:1:3                   |
| (11.1.4)                            | 4. O. E                 |
| Ferrate(III)                        | 4:2:5                   |
| 3:1:3                               | 1:1:2                   |
| 4:2:5                               |                         |
| 1:1:2                               | Ferrate(II/III) (n:1:2) |
| Ferrate(II/III)                     | Ketten                  |
| ( <i>n</i> :1:2)                    |                         |
| Ketten                              | Cluster                 |
| Cluster                             | Waitara Earrata(II/III) |
| Weitere Fer-                        | Weitere Fenate(II/III)  |
| rate(II/III)                        | Diferrate               |
| Diferrate                           | Cluster                 |
| Cluster                             |                         |
| Bänder                              | Bander                  |
| Schichten                           | Schichten               |
| Zusammen-                           |                         |
| fassung                             | Zusammenfassung         |
|                                     |                         |

# $Cs_7[Fe^{III}S_2]_2[Fe_2^{II,III}S_3]_2$ : Kristallstruktur

### $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$

 $\frac{\text{Synthese:}}{T_{\text{max}}=1000} \, {}^{\circ}\text{C}$ 

Kristalle

Struktur

Kristalls

Raumgru

paramete

Gitter-

[pm,<sup>0</sup>]

R-Wert

Abstände

Cs

[pm]

CN

Z

#### Einleitung

Ortho-Ferrate (n:1:4)

#### Ferrate(III)

3:1:3 4:2:5

1:1:2

#### Ferrate(II/III) (n:1:2)

Ketten

Cluster

#### Weitere Ferrate(II/III)

Diferrate

Cluster

Bänder

Schichten

Zusammenfassung

| schwa<br>Nadelr  | rz-glänzende<br>1 |                                                                                                          |  |
|------------------|-------------------|----------------------------------------------------------------------------------------------------------|--|
| typ              | eigener           |                                                                                                          |  |
| /stem            | monoklin          |                                                                                                          |  |
| рре              | C2/m, Nr. 12      |                                                                                                          |  |
| а                | 3083.8(2)         |                                                                                                          |  |
| er b             | 559.03(3)         |                                                                                                          |  |
| с                | 761.57(4)         |                                                                                                          |  |
| $\beta$          | 95.829(4)         | Gitterenergien: Csz [Fe <sup>III</sup> Sə]ə [Fe <sup>II,III</sup> Sə]ə energetisch cə. 100 k.J/mol       |  |
|                  | 2                 |                                                                                                          |  |
| <i>R</i> 1       | 0.0715            |                                                                                                          |  |
| e Fe-S           | 227.9-237.0       | günstiger als $Cs_7[Fe^{17} m S_2]_2[Fe_2^m S_3]_2$                                                      |  |
| Fe-Fe            | 273.6-285.4       | . 11/11                                                                                                  |  |
| S μ <sub>2</sub> | 2 + (5-7)         | Vergleich für B: $A[Fe_2^{","}S_3]$ (CsCu <sub>2</sub> Cl <sub>3</sub> -Typ, 'spin-ladder'-Verbindungen) |  |
| S μ4             | 4 + 4             |                                                                                                          |  |

M. Schwarz, C.R., Z. Anorg. Allg. Chem. 641, 1053-1060 (2015).

7 (+4)

| $A_{\chi}^{ }Fe_{y}Q_{z}$    | Einleitung                       |
|------------------------------|----------------------------------|
|                              | $Ortho_Ferrate(n:1:4)$           |
| Einleitung                   | Ortho-reflace (II.1.+)           |
| Ortho-                       | Ferrate(III)                     |
| Ferrate                      | 2.1.2                            |
| ( <i>n</i> :1:4)             | 0.1.0                            |
| Ferrate(III)                 | 4:2:5                            |
| 3:1:3                        | 1:1:2                            |
| 4:2:5                        |                                  |
| 1:1:2                        | Ferrate(II/III) ( <i>n</i> :1:2) |
| Ferrate(II/III)              | Ketten                           |
| ( <i>n</i> :1:2)             | Cluster                          |
| Ketten                       | Cluster                          |
| Cluster                      | Weitere Ferrate(II/III)          |
| Weitere Fer-<br>rate(II/III) | Diferrate                        |
| Diferrate                    | Cluster                          |
| Cluster                      | Cluster                          |
| Bänder                       | Bänder                           |
| Schichten                    | Schichten                        |
| Zusammen-                    |                                  |
| fassung                      | Zusammenfassung                  |
|                              |                                  |

# $\mathsf{Cs}_{11}[\mathsf{Fe}_{10}^{2.33+}\mathsf{S}_{16}][\mathsf{O}]$

 $A_{X}^{\mathsf{I}}\mathsf{Fe}_{Y}Q_{Z}$ 

| E: |         |  |
|----|---------|--|
|    | leitune |  |
|    |         |  |
|    |         |  |

Ortho-Ferrate (n:1:4)

Ferrate(III) 3:1:3

4:2:5 1:1:2

Ferrate(II/III) (n:1:2)

Ketten

Cluster

Weitere Ferrate(II/III)

Diferrate Cluster

Bänder

Schichten

| Strukturtyp    |            | eigener               |
|----------------|------------|-----------------------|
| Kristallsystem |            | tetragonal            |
| Raumgruppe     |            | 14/mmm, Nr. 139 (Z=2) |
| Gitterpara-    | а          | 1199.34(2)            |
| meter [pm]     | с          | 1411.65(2)            |
| <i>R</i> -Wert | <i>R</i> 1 | 0.0233                |
| Abstände       | Fe-S       | 228.8 - 238.3         |
| [pm]           | Fe-Fe      | 279.7, 284.2          |
|                | O-Cs(2,4)  | 285.4, 303.2          |
| CN             | S          | 3+4, 2+5              |
|                | Cs         | 0+8 (2×), 1+4, 1+6    |





## Strukturbezug KFe<sub>2</sub>S<sub>2</sub> - Cs<sub>11</sub>[Fe<sub>10</sub>S<sub>16</sub>][O]



Ortho-

Ferrate

(n:1:4)

3:1:3

4:2:5

1:1:2

(n:1:2)

Ketten



 $\mathsf{CsFe}_2\mathsf{S}_2 \xrightarrow{\times 9} \mathsf{Cs}_9[\mathsf{Fe}_{18}\mathsf{S}_{18}] \xrightarrow[2\mathsf{S}\leftrightarrow 2\mathsf{Cs}]{} \mathsf{Cs}_{11}[\mathsf{Fe}_{10}\mathsf{S}_{16}] \xrightarrow{+10} \mathsf{Cs}_{11}[\mathsf{Fe}_{10}\mathsf{S}_{16}][\mathsf{O}]$ 

s

16n

0

1/3

S(2)

16n

0

Cluster Weitere Ferrate(II/III)

Diferrate Cluster

Bänder Schichten

| $A_{X}^{ }Fe_{Y}\mathcal{Q}_{Z}$            | Einleitung                           |
|---------------------------------------------|--------------------------------------|
| Einleitung                                  | Ortho-Ferrate ( <i>n</i> :1:4)       |
| Ortho-<br>Ferrate<br>(n:1:4)                | Ferrate(III)<br>3:1:3                |
| Ferrate(III)                                | 4:2:5                                |
| 4:2:5<br>1:1:2                              | Ferrate( $  /   $ ) ( <i>n</i> :1:2) |
| Ferrate(II/III)<br>(n:1:2)<br>Ketten        | Ketten<br>Cluster                    |
| Cluster<br>Weitere Fer-<br>rate(II/III)     | Weitere Ferrate(II/III)<br>Diferrate |
| Diferrate<br>Cluster<br>Bänder<br>Schichten | Cluster<br>Bänder<br>Schichten       |
| Zusammen-<br>fassung                        | Zusammenfassung                      |

## Zusammenfassung: Alkalimetall-Chalkogenido-Ferrate

### $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_z$

### Einleitung

- Ortho-Ferrate (n:1:4)
- Ferrate(III)
- 3:1:3
- 4:2:5
- 1:1:2

#### Ferrate(II/III) (n:1:2)

- Ketten
- Cluster

#### Weitere Ferrate(II/III)

- Diferrate
- Cluster
- Schichten
- Zusammenfassung

## Synthese und Kristallchemie

- neue Oxido/Sulfido/Selenido/Tellurido-Ferrate durch sehr variable Probenzusammensetzung
- Oxido-Ferrate mit Fe(VI) bis Fe(II)
- Fe(III): Vervollständigung bekannter Reihen (1:1:2, 3:2:4), neue Zusammensetzung (8:4:10), +Sulfid/Disulfid-Doppelsalze
- Fe(II): Na<sub>2</sub>FeS<sub>2</sub> und Na<sub>2</sub>FeSe<sub>2</sub>: erste reine Ketten-Ferrate(II)
- Fe(II/III): zahlreiche neue gemischtvalente Sulfido-Kettenferrate
- Fe(II/III): 4Fe4Q- und 3Fe4Q-Cluster mit S, Se und Te
- Cs<sub>7</sub>[Fe<sup>III</sup>S<sub>2</sub>]<sub>2</sub>[Fe<sup>II,III</sup>S<sub>3</sub>]<sub>2</sub>: ein gemischtes Ketten/Band-Sulfido-Ferrat
- $Cs_{11}[Fe_{10}^{2\cdot33+}S_{16}](O)$ : eine Schicht-Sulfidoferrat-Oxid

## Zusammenfassung: Alkalimetall-Chalkogenido-Ferrate

### $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_Z$

### Einleitung

- Ortho-Ferrate (n:1:4)
- Ferrate(III)
- 3:1:3
- 4:2:5
- 1:1:2

#### Ferrate(II/III) (n:1:2)

- Ketten
- Cluster

#### Weitere Ferrate(II/III)

- Diferrate
- Cluster
- Bänder
- Schichten

Zusammenfassung

## Synthese und Kristallchemie

- neue Oxido/Sulfido/Selenido/Tellurido-Ferrate durch sehr variable Probenzusammensetzung
- Oxido-Ferrate mit Fe(VI) bis Fe(II)
- Fe(III): Vervollständigung bekannter Reihen (1:1:2, 3:2:4), neue Zusammensetzung (8:4:10), +Sulfid/Disulfid-Doppelsalze
- Fe(II): Na<sub>2</sub>FeS<sub>2</sub> und Na<sub>2</sub>FeSe<sub>2</sub>: erste reine Ketten-Ferrate(II)
- Fe(II/III): zahlreiche neue gemischtvalente Sulfido-Kettenferrate
- Fe(II/III): 4Fe4Q- und 3Fe4Q-Cluster mit S, Se und Te
- Cs<sub>7</sub>[Fe<sup>III</sup>S<sub>2</sub>]<sub>2</sub>[Fe<sup>II,III</sup>S<sub>3</sub>]<sub>2</sub>: ein gemischtes Ketten/Band-Sulfido-Ferrat
- Cs<sub>11</sub>[Fe<sub>10</sub><sup>2·33+</sup>S<sub>16</sub>](O): eine Schicht-Sulfidoferrat-Oxid

## Chemische Bindung, Bandstrukturen, Magnetismus

- Fe immer HS
- magnetische Momente erniedrigt durch L→Fe-Hinbindung s/d-Zustände
- Spindichten: magnetischer Austausch *via* 90°-Superaustausch → i.A. AFM bis zu sehr hohen Temperaturen
  - $\mapsto$  Ausnahme: einige gemischtvalente Ferrate (Na<sub>7</sub>[Fe<sub>2</sub>S<sub>6</sub>], 3Fe4Q-Cluster)

## Zusammenfassung: Alkalimetall-Chalkogenido-Ferrate

### $A_x^{\mathsf{I}}\operatorname{Fe}_y Q_Z$

### Einleitung

- Ortho-Ferrate (n:1:4)
- Ferrate(III)
- 3:1:3
- 4:2:5
- 1:1:2

#### Ferrate(II/III) (n:1:2)

- Ketten
- Cluster

#### Weitere Ferrate(II/III)

- Diferrate
- Cluster
- Schichten

Zusammenfassung

## Synthese und Kristallchemie

- neue Oxido/Sulfido/Selenido/Tellurido-Ferrate durch sehr variable Probenzusammensetzung
- Oxido-Ferrate mit Fe(VI) bis Fe(II)
- Fe(III): Vervollständigung bekannter Reihen (1:1:2, 3:2:4), neue Zusammensetzung (8:4:10), +Sulfid/Disulfid-Doppelsalze
- Fe(II): Na<sub>2</sub>FeS<sub>2</sub> und Na<sub>2</sub>FeSe<sub>2</sub>: erste reine Ketten-Ferrate(II)
- Fe(II/III): zahlreiche neue gemischtvalente Sulfido-Kettenferrate
- Fe(II/III): 4Fe4Q- und 3Fe4Q-Cluster mit S, Se und Te
- Cs<sub>7</sub>[Fe<sup>III</sup>S<sub>2</sub>]<sub>2</sub>[Fe<sup>II,III</sup>S<sub>3</sub>]<sub>2</sub>: ein gemischtes Ketten/Band-Sulfido-Ferrat
- $Cs_{11}[Fe_{10}^{2\cdot33+}S_{16}](O)$ : eine Schicht-Sulfidoferrat-Oxid

### Chemische Bindung, Bandstrukturen, Magnetismus

- Fe immer HS
- magnetische Momente erniedrigt durch L→Fe-Hinbindung s/d-Zustände
- Spindichten: magnetischer Austausch *via* 90°-Superaustausch → i.A. AFM bis zu sehr hohen Temperaturen
  - $\mapsto$  Ausnahme: einige gemischtvalente Ferrate (Na<sub>7</sub>[Fe<sub>2</sub>S<sub>6</sub>], 3Fe4Q-Cluster)

## Ausblick ...

## Dank ...

 $A_X^{\mathsf{I}}\operatorname{Fe}_y Q_Z$ 

### Einleitung

- Ortho-Ferrate (n:1:4)
- Ferrate(III)
- 3:1:3
- 4:2:5
- 1:1:2

#### Ferrate(II/III) (n:1:2)

- Ketten
- Cluster

### Weitere Ferrate(II/III)

- Diferrate
- Cluster
- Bänder
- Schichten

Zusammen fassung

## ... den Mitarbeiterinnen und Mitarbeitern

- Gero Frisch, Samuel Engelhardt, Michael Schwarz, Angela Berroth, Fritz Wortelkamp, Pirmin Stüble, Michael Langenmaier, Katharina Köhler
- Jan Kägi, Anna Lehner, Lisa Schindler, Miriam Haas, Zhouling Deng, Milan Braitsch, Korina Kraut, Simone Schnabel, Sabine Zimper
- Marco Wendorff, Carolin Meyer, Martha Falk, Bernard Lehmann
- Britta Lang, Michael Jehle, Viktoria Mihajlov, Ines Dürr, Saskia Fink, Melanie Gehring, Wiebke Harms, Holger Kriwett, Michael Rhode, Nina Kasova, Denis Petri, Constantin Hoch, Franziska Emmerling, Christian Reinhardt

### ... den Kooperationspartnern

- AK Johrendt (LMU): magnetische Messungen
- Thorsten Koslowski (FR)
- Larry W. Finger, Martin Kroeker, Brian Toby (Programm DRAWxtl)<sup>1</sup>
- Harald Scherer, Anke Hoffmann (FR): MAS-NMR
- Holger Kohlmann (L): Neutronenbeugung
- ... den Geldgebern
  - Deutsche Forschungsgemeinschaft
  - Fonds der Chemischen Industrie<sup>2</sup>
  - Land Baden-Württemberg<sup>3</sup>

 $^{1}$  www.lwfinger.net;  $^{2}$  Stipendium A. Lehner;  $^{3}$ u. A. Landeslehrpreis, LKA

 $A_{X}^{\mathsf{I}}\operatorname{Fe}_{Y}Q_{Z}$ 

#### Einleitung

Ortho-Ferrate (n:1:4)

### Ferrate(III)

3:1:3

4:2:5

1:1:2

#### Ferrate(II/III) (n:1:2)

Ketten

Cluster

#### Weitere Ferrate(II/III)

Diferrate

Cluster

Bänder

Schichten

Zusammenfassung

# Danke !