Caroline Röhr, Universität Freiburg, Institut für Anorganische und Analytische Chemie

Sammlung und Aufbereitung von Intensitätsdaten

Symmetrie im reziproken Raum

http://ruby.chemie.uni-freiburg.de/Vorlesung/Seminare/chemkrist09.pdf

Inhalt

- 1. Ewald-Konstruktion
 - 1.1. Von Bragg zu Ewald
 - 1.2. Grenzkugel

2. Historisches

- 2.1. Filmmethoden
- 2.2. Vierkreisdiffraktometer
- 3. Diffraktometer mit Flächenzähler
 - 3.1. Hardware
 - 3.2. Indizierung
 - 3.3. Meßstrategien und -parameter
- 4. Integration und Datenreduktion
 - 4.1. Erfassung integraler Intensitäten
 - 4.2. Lorentzkorrektur
 - 4.3. Polarisationskorrektur
 - 4.4. Absorptionskorrektur
- 5. Symmetrie im reziproken Raum
 - 5.1. Inversionssymmetrie, absolute Strukturen
 - 5.2. Laueklasse
 - 5.3. Systematische Auslöschungen
 - 5.4. Beugungssymbol, Raumgruppenbestimmung

1. Ewald-Konstruktion

Von Braggs ...

William Lawrence Bragg (d William Henry Bragg (u)

... über den Streuvektor ...

- 'Reflektions' bedingung: Streuvektor $\vec{s}_{\vec{h}}$ ($|| d_{\vec{h}}$) = reziproker Gittervektor $r_{\vec{h}}^*$
- s winkelhalbierend zwischen ein- und aus-fallendem Strahl

... zur Ewald-Konstruktion

• Vorteil:

Ewald-Konstruktion

- 'Reflektions' bedingung erfüllt für alle $r_{\vec{h}}^{\vec{*}}$,
- deren Endpunkte auf Kugel mit Radius $\frac{1}{\lambda}$ um den Kristall liegen
- \mapsto Ewald-Kugel

Paul Peter Ewald (1888-1985)

Ewald-Konstruktion

• Drehung des Kristalls ↔ Drehung des reziproken Gitters

• Reflexe wandern durch die 'Reflektions'bedingung \Rightarrow

1.2. Ewald-Konstruktion: Grenzkugel

Ewald-Konstruktion: Zusammenfassung

- Annahmen:
 - o monochromatische Strahlung
 - feste Einfallsrichtung des Primärstrahls
 - ♦ Einkristall
- Ewald-Kugel: Kugel mit Radius 1/ λ um Kristall (real \mapsto reziprok)
- 'Reflektions'bedingung: Streuvektor \vec{s} fällt mit reziprokem Gittervektor \vec{r}^* zusammen
- wenn \vec{r}^* auf Ewald-Kugel $\mapsto \vec{s} \mapsto Bragg-Reflex$
- vom Kristall in Richtung Spitze des reziproken Gittervektors/Streuvektors
- Konsequenzen für Experimente:
 - Kristalldrehungen um mindestens 2 Achsen
 - Detektoren mit möglichst großer Fläche
 - ♦ Radius der Grenzkugel: $\frac{2}{\lambda}$
 - ◇ Reflex-Volumina (Mosaik-Struktur) \mapsto 'Scans' für integrale Intensitäten \Rightarrow

2. Historisches

2.1. Filmmethoden

- ⊕ Film als Flächendetektor → viele Reflexe gleichzeitig detektierbar
- \ominus I_{*i*} nur mit großem Aufwand/ungenau (Integrationsmechanik, Densitometer usw.)
- ⊖ aufwändige Kristall-Justage
- Prinzip allgemein:
 - \diamond Drehung des Kristalls um eine einjustierte Achse (ϕ)
 - \diamond Drehkristallaufnahmen: von einer Schicht bei Drehung um ϕ erzeugte Reflexe auf Kegelmänteln, die
 - zylindrischen Film ($\phi \parallel$ Zylinderachse) in gerade Linien schneiden (Weissenberg)
 - auf planen Filmen ($\phi \perp$ Film) als Ringe erscheinen (Buerger, DeJong: Cone-Aufnahmen)
 - daraus: Länge des parallel zur Drehachse eingestellten Einheitsvektors
 - Aufnahmen einzelner Schichten durch 'Ausblenden' aller anderen Schichten
 - Verteilung der Reflexe dieser Schicht (Linie bzw. Ring) auf dem Film durch clevere Mechanik (Kopplung der Drehung um die Kristallachse mit Verschiebung des Films)

Filmmethoden: Weissenberg

- zylindrischer Film
- \oplus 'einfache' Mechanik
- Drehkristallaufnahme \Rightarrow
- \ominus Schichten \mapsto verzerrt \mapsto Symmetrie schwer erkennbar, Umzeichnen erforderlich

Filmmethoden: Weissenberg

Drehkristall-Aufnahme

Äquator (0. Schicht)

Filmmethoden: Buerger

- \ominus aufwändige Mechanik
- Cone/Kegel-Aufnahmen \Rightarrow
- \oplus Schichten \mapsto unverzerrt \mapsto Symmetrie direkt erkennbar

Filmmethoden: Buerger

Kegel-Aufnahme

Buerger-Äquator

Filmmethoden: Explorer (Buerger oder DeJong-Bouman)

2.2. Vierkreisdiffraktometer

- \oplus sehr gute Intensitätsinformation
- \oplus keine Justage des Kristalls
- \ominus Punkt-Zähler: nur einzelne Reflexe in einer Ebene (Θ -Kreis) messbar \mapsto
 - o mehrere Drehachsen (Kreise) erforderlich, um alle Reflexe in Zählerebene einzudrehen
 - > zeitaufwändig

Enraf-Nonius CAD-4

2.2. Vierkreisdiffraktometer: Bauarten

- κ -Geometrie (ϕ , κ , ω und θ)
- Euler-Wiege (ϕ , χ , ω und θ)

Philips PW-1100, Univ. Erlangen

2.2. Vierkreisdiffraktometer

- Reflexsuche \mapsto Indizierung \mapsto Orientierungs-Matrix
- einzelne Reflexe in Zählerebene einschwenken

- \mapsto Untergrund (rechts/links), integrale Intensitäten
- unterschiedliche Modi \Rightarrow

3. Diffraktometer mit Flächenzähler

3.1. Hardware, Beispiel I: Rigaku Spider

- Dreiachsen-Goniometer (ϕ , χ , ω)
- gebogene ⊖- und d-feste Image-Plate

3.1. Hardware, Beispiel II: Stoe-IPDS-II

• Zweiachsen-Goniomter (ϕ , ω , χ =54.7°)

• ebene, Θ-feste Image-Plate

3.1. Hardware, Beispiel III: Bruker AXS CCD

- Zweiachsen-Goniometer (ϕ , ω , χ = 54.7°)
- in ⊖ beweglicher CCD-Detektor

3.2. Images, Beispiel I: Rigaku-Spider

3.2. Images, Beispiel II: Stoe IPDS-II

3.2. Indizierung

- Reflexsuche (Peak-Search/Picking/Hunting) oberhalb einer σ -Schranke
- Indizierung: Zuordnung zu einem Gitter (primitiv → Bravais)
- Strategien:
 - ◇ Suche nach kurzen/häufigen Vektoren zwischen Reflexen (DIFFERENCE VECTORS)

Graphische Indizierung: Projektionen der Differenzvektoren

3.2. Indizierung: Strategien (Stoe IPDS-II)

- Projektion aller Differenzvektoren auf Äquator-Ebene
- \mapsto wiederkehrende Richtungen liegen auf Linien
- Auswahl 3er linear unabhängiger Geraden (Richtungsanalyse)
- → primitive Elementarzelle

3.2. Ergebnis der Indizierung (Beispiel)

08-Nov-2008 14:14 ----- Peak search -----

```
Selected runs/frames ( available: 0 runs, 103 frames ) :

Run 1 Frames 1,103

Min, max I/Sigma : 10.0, 0.0 Grid : 6 N-Skip : 0

Min, max 2Theta : 3.0, 60.0 New peaklist : Yes

3250 Peaks found, deleted 390, independent 1843
```

08-Nov-2008 14:14 ------ Index results ------

Number of peaks used/selected = 1843 out of 1843

Initial cell :9.4835.0049.47274.6130.6158.08174.6Final cell :5.0145.0058.03889.9790.05119.91174.8

Lattice type : Trigonal P

Indexed peaks: 1649 (89.5 %)

Orienting matrix : 0.118543 -0.039489 0.087210 -0.116869 0.037989 0.088717 -0.158841 -0.223891 -0.000327

- Wellenlänge
 - Absorptionsprobleme (bei weicher = langwelligerer Strahlung kritischer)
 - ♦ Grenzkugel: λ groß \mapsto Θ klein \mapsto Auflösung klein
- Meßzeit
 - > Proportionalitätsbereiche der Zählertypen
 - ◊ Warteschlange
- Auflösung (RESOLUTION) (in d oder θ)
- Redundanz (REDUNDANCY)
 - f(Laueklasse, Absorptionsprobleme, Warteschlange)
- Vollständigkeit der Daten (COMPLETENESS)
- Scan-Arten (bei festen Platten nur ω)
- Scanbreiten
 - Narrow-Scan (< 1°): Reflexe über mehrere Images verteilt
 - mehr Images → bei schnellen CCDs bevorzugt
 - bei Integration angepaßte Reflexprofile
 - genauere Reflexpositionen (Gitterparameter)
 - ◊ Wide-Scan (> 1°): jeder Reflex vollständig auf einem Image
 - weniger Bilder erforderlich → bei Image Plates bevorzugt
 - Integration durch Detektor
 - ungenauere Reflexpositionen (Gitterparameter)

- Wellenlänge
 - Absorptionsprobleme (bei weicher = langwelligerer Strahlung kritischer)
 - \diamond Grenzkugel: λ groß $\mapsto \Theta$ klein \mapsto Auflösung klein
- Meßzeit
 - > Proportionalitätsbereiche der Zählertypen
 - ◊ Warteschlange
- Auflösung (RESOLUTION) (in d oder θ)
- Redundanz (REDUNDANCY)
 - f(Laueklasse, Absorptionsprobleme, Warteschlange)
- Vollständigkeit der Daten (COMPLETENESS)
- Scan-Arten (bei festen Platten nur ω)
- Scanbreiten
 - ◇ Narrow-Scan (< 1°): Reflexe über mehrere Images verteilt</p>
 - mehr Images → bei schnellen CCDs bevorzugt
 - bei Integration angepaßte Reflexprofile
 - genauere Reflexpositionen (Gitterparameter)
 - \diamond Wide-Scan (> 1°): jeder Reflex vollständig auf einem Image
 - weniger Bilder erforderlich → bei Image Plates bevorzugt
 - Integration durch Detektor
 - ungenauere Reflexpositionen (Gitterparameter)

- Wellenlänge
 - Absorptionsprobleme (bei weicher = langwelligerer Strahlung kritischer)
 - \diamond Grenzkugel: λ groß $\mapsto \Theta$ klein \mapsto Auflösung klein
- Meßzeit
 - > Proportionalitätsbereiche der Zählertypen
 - ◊ Warteschlange
- Auflösung (RESOLUTION) (in d oder θ)
- Redundanz (REDUNDANCY)
 - f(Laueklasse, Absorptionsprobleme, Warteschlange)
- Vollständigkeit der Daten (COMPLETENESS)
- Scan-Arten (bei festen Platten nur ω)
- Scanbreiten
 - ◇ Narrow-Scan (< 1°): Reflexe über mehrere Images verteilt</p>
 - mehr Images → bei schnellen CCDs bevorzugt
 - bei Integration angepaßte Reflexprofile
 - genauere Reflexpositionen (Gitterparameter)
 - \diamond Wide-Scan (> 1°): jeder Reflex vollständig auf einem Image
 - weniger Bilder erforderlich → bei Image Plates bevorzugt
 - Integration durch Detektor
 - ungenauere Reflexpositionen (Gitterparameter)

- Wellenlänge
 - Absorptionsprobleme (bei weicher = langwelligerer Strahlung kritischer)
 - \diamond Grenzkugel: λ groß $\mapsto \Theta$ klein \mapsto Auflösung klein
- Meßzeit
 - Proportionalitätsbereiche der Zählertypen
 - ◊ Warteschlange
- Auflösung (RESOLUTION) (in d oder θ)
- Redundanz (REDUNDANCY)
 - f(Laueklasse, Absorptionsprobleme, Warteschlange)
- Vollständigkeit der Daten (COMPLETENESS)
- Scan-Arten (bei festen Platten nur ω)
- Scanbreiten
 - ◇ Narrow-Scan (< 1°): Reflexe über mehrere Images verteilt</p>
 - mehr Images → bei schnellen CCDs bevorzugt
 - bei Integration angepaßte Reflexprofile
 - genauere Reflexpositionen (Gitterparameter)
 - \diamond Wide-Scan (> 1°): jeder Reflex vollständig auf einem Image
 - weniger Bilder erforderlich → bei Image Plates bevorzugt
 - Integration durch Detektor
 - ungenauere Reflexpositionen (Gitterparameter)

- Wellenlänge
 - Absorptionsprobleme (bei weicher = langwelligerer Strahlung kritischer)
 - ♦ Grenzkugel: λ groß \mapsto Θ klein \mapsto Auflösung klein
- Meßzeit
 - > Proportionalitätsbereiche der Zählertypen
 - ◊ Warteschlange
- Auflösung (RESOLUTION) (in d oder θ)
- Redundanz (REDUNDANCY)
 - f(Laueklasse, Absorptionsprobleme, Warteschlange)
- Vollständigkeit der Daten (COMPLETENESS)
- Scan-Arten (bei festen Platten nur ω)
- Scanbreiten
 - ◇ Narrow-Scan (< 1°): Reflexe über mehrere Images verteilt</p>
 - mehr Images → bei schnellen CCDs bevorzugt
 - bei Integration angepaßte Reflexprofile
 - genauere Reflexpositionen (Gitterparameter)
 - ◊ Wide-Scan (> 1°): jeder Reflex vollständig auf einem Image
 - weniger Bilder erforderlich → bei Image Plates bevorzugt
 - Integration durch Detektor
 - ungenauere Reflexpositionen (Gitterparameter)

- Wellenlänge
 - Absorptionsprobleme (bei weicher = langwelligerer Strahlung kritischer)
 - \diamond Grenzkugel: λ groß $\mapsto \Theta$ klein \mapsto Auflösung klein
- Meßzeit
 - > Proportionalitätsbereiche der Zählertypen
 - ◊ Warteschlange
- Auflösung (RESOLUTION) (in d oder θ)
- Redundanz (REDUNDANCY)
 - f(Laueklasse, Absorptionsprobleme, Warteschlange)
- Vollständigkeit der Daten (COMPLETENESS)
- Scan-Arten (bei festen Platten nur ω)
- Scanbreiten
 - ◇ Narrow-Scan (< 1°): Reflexe über mehrere Images verteilt</p>
 - mehr Images → bei schnellen CCDs bevorzugt
 - bei Integration angepaßte Reflexprofile
 - genauere Reflexpositionen (Gitterparameter)
 - $\diamond~$ Wide-Scan (> 1°): jeder Reflex vollständig auf einem Image
 - weniger Bilder erforderlich → bei Image Plates bevorzugt
 - Integration durch Detektor
 - ungenauere Reflexpositionen (Gitterparameter)

- Wellenlänge
 - Absorptionsprobleme (bei weicher = langwelligerer Strahlung kritischer)
 - \diamond Grenzkugel: λ groß $\mapsto \Theta$ klein \mapsto Auflösung klein
- Meßzeit
 - > Proportionalitätsbereiche der Zählertypen
 - ◊ Warteschlange
- Auflösung (RESOLUTION) (in d oder θ)
- Redundanz (REDUNDANCY)
 - f(Laueklasse, Absorptionsprobleme, Warteschlange)
- Vollständigkeit der Daten (COMPLETENESS)
- Scan-Arten (bei festen Platten nur ω)
- Scanbreiten
 - ◇ Narrow-Scan (< 1°): Reflexe über mehrere Images verteilt</p>
 - mehr Images → bei schnellen CCDs bevorzugt
 - bei Integration angepaßte Reflexprofile
 - genauere Reflexpositionen (Gitterparameter)
 - \diamond Wide-Scan (> 1°): jeder Reflex vollständig auf einem Image
 - weniger Bilder erforderlich → bei Image Plates bevorzugt
 - Integration durch Detektor
 - ungenauere Reflexpositionen (Gitterparameter)

3.3. Meßstrategien und -parameter

- Wellenlänge
 - Absorptionsprobleme (bei weicher = langwelligerer Strahlung kritischer)
 - ♦ Grenzkugel: λ groß \mapsto Θ klein \mapsto Auflösung klein
- Meßzeit
 - > Proportionalitätsbereiche der Zählertypen
 - ◊ Warteschlange
- Auflösung (RESOLUTION) (in d oder θ)
- Redundanz (REDUNDANCY)
 - f(Laueklasse, Absorptionsprobleme, Warteschlange)
- Vollständigkeit der Daten (COMPLETENESS)
- Scan-Arten (bei festen Platten nur ω)
- Scanbreiten
 - ◇ Narrow-Scan (< 1°): Reflexe über mehrere Images verteilt</p>
 - mehr Images → bei schnellen CCDs bevorzugt
 - bei Integration angepaßte Reflexprofile
 - genauere Reflexpositionen (Gitterparameter)
 - \diamond Wide-Scan (> 1°): jeder Reflex vollständig auf einem Image
 - weniger Bilder erforderlich → bei Image Plates bevorzugt
 - Integration durch Detektor
 - ungenauere Reflexpositionen (Gitterparameter)

4. Integration, Datenreduktion

4.1. Erfassung integraler Intensitäten

• Integration aller Reflexe auf allen Images (Integrationsellipsoide, Profile, ...)

4.2. Lorentz-Korrektur

- Korrektur auf Verweilzweit der Reflexe in 'Reflektions'stellung
- Korrekturfaktor L proportional zur Zeit, die Reflex in Beugungsposition ist.
- Einfachster Fall: Äquator-Reflexe; Drehung des Kristalls/reziproken Gitters mit konstanter Winkelgeschwindigkeit ω

- Aufenthaltszeit des Reflexes (bei ω = konst.) kürzer, wenn
 - reziproker Gittervektor lang
 - ◇ Winkel zwischen Ewald-Kugel-Tangente und der Tangente am Kristall-Drehkreis stumpf

4.2. Lorentz-Korrektur (Forts.)

• Für L gilt mit der linearen Geschwindigkeitskomponente V_n entlang des Kugelradius:

• Konsequenz:

- L f
 ür verschiedene Experimente/Ger
 äte/Scan-Arten ... kompliziert, aber jeweils bekannt und berechenbar
- ♦ Werte für L: + ∞ (Θ = 0°) ... 1 (45°) ... + ∞ (90°)

4.3. Polarisations-Korrektur

• einfachster Fall: zirkular polarisierter Primärstrahl

- Amplitude der zirkular polarisierten Strahlung zerlegbar (Verhältnis 1:1) in A₁ und A₁
- A_{II}: unverändert durch Beugung
- A_{\perp} : nur Komponente \perp Ausfallsrichtung bleibt erhalten

$$\cos 2\theta = \frac{Ankathete}{Hypotenuse} = \frac{A_{aus}}{A_{ein}}$$

• wegen $I_{aus} = A_{aus}^2$ folgt für die senkrechte Komponente:

$$\mathsf{I}_{\mathsf{aus}} = \mathsf{I}_{\mathsf{ein}} \cos^2 2\theta$$

und wegen unverändertem A_{||} insgesamt als Korrekturfaktor:

$$p = \frac{1 + \cos^2 2\Theta}{2}$$

4.3. Polarisations-Korrektur (Forts.)

- I! bei Verwendung von Kristallmonochromatoren
 - Primärstrahl durch Monochromator bereits teilpolarisiert
 - ◊ → komplizierte Formeln f
 ür p,
 - mit Parametern, die vom Monochromatorkristall (Mosaizität) abhängen.
- Konsequenz der Polarisationskorrektur:
 - ♦ Werte für p: 1.0 ... 0.5 (bei θ = 45°)
- Lp-Gesamtkorrektur gesamt (Produkt):

$$\mathsf{Lp} = \frac{1 + \cos^2 2\theta}{2\sin 2\theta}$$

- ♦ Beispiele:
- $\diamond \quad \theta = 5^{\circ} \mapsto Lp = 5.67$
- $\diamond \quad \theta = 20^{\circ} \mapsto Lp = 1.23$
- $\diamond \quad \theta = 45^{\circ} \mapsto Lp = 0.5$

• wegen $F_{obs} = \sqrt{\frac{I_{roh}}{LpA}}$ werden Hochwinkelreflexe relativ verstärkt

(wichtig z.B. für die Bewertung von Auslöschungsbedingungen).

4.4. Absorptionskorrektur

- Absorption durch elastische (Rayleigh) und inelastische (Compton)-Streuung, Ionisation
- Korrektur durch Absorptionsfaktor A nach Lambert-Beer:

$$\mathsf{A} = \mathsf{e}^{-\mu\mathsf{d}}$$

A hängt ab von

- \diamond Massenschwächungskoeffizienten μ der enthaltenen Elemente
 - \mapsto A steigt ca. mit (Ordnungszahl)⁴
 - \mapsto A steigt ca. mit λ^3 (d.h. Cu:Mo wie ca. 8:1)
- Weglänge d der Strahlung (ein/aus) durch Kristall
- Korrekturen:
 - ◊ nur ^O-Kristalle verwenden
 - <u>numerisch</u>: bei bekannter Kristall-Form/Abmessungen/Orientierung auf dem Diffraktometer
 → Addition über alle Volumeninkremente

4.4. Absorptionskorrektur (Forts.)

- Korrekturen (Forts.):
 - empirisch mit <u>Ψ-Scans</u>
 - I einiger ausgewählter Reflexe bei vielen Ψ-Winkeln (z.B. alle 10°) vermessen
 - daraus Absorptionsprofil des Kristalls berechnen
 - (i.A. nur bei Vierkreisdiffraktometern möglich)

- o empirisch mit <u>multiscan</u>-Methode:
 - ähnlich Ψ-Scans, aber
 - vorhandene Redundanz der Daten wird zur Anpassung des Absorptionsprofils genutzt
 - (nur bei hohen Redundanzen, z.B. Flächenzählerdaten, besonders bei hoher Symmetrie, s.u.)
- Optimierung ausgewählter Kristallformen auf Basis von Redundanzen (XSHAPE)
- ♦ Modellabhängige Korrekturen auf Basis F_{obs} F_{calc} (DIFABS)

Zusammenfassung Integration/Datenreduktion

- überwiegend Software der Diffraktometerhersteller (Was hinter meiner Software steckt → ?)
- Integration: Erfassen der integralen Intensitäten aller gemessenen Reflexe (Profile, Scans, Untergrund, Meßzeiten, Attenuator, usw.)
- Lorentz- und Polarisationskorrektur
- Absorptionskorrektur
- ggf. Zerfallskorrektur
- \mapsto Ergebnis ...

\mapsto 'hkl-Datei'

Gitterkonstanten und ...

5. Symmetrie im reziproken Raum

5.1. Symmetrie im realen Raum (Wdh.)

Punktsymmetrie Translations-S.

5.1. Symmetrie des reziproken Gitters (ohne I/F)

- Das nicht (!) intensitätsgewichtete reziproke Gitter ist translationssymmetrisch:
 - \diamond Gitterparameter: a*, b*, c*, α^* , β^* , γ^*
 - ◊ ggf. spezielle Metrik (aufgrund von Symmetrie, s.u.)
 - ◇ Zuordnung zu einem der 7 Kristallsysteme (analog Realraum); (Indizierung → primitive reziproke Gittervektoren)

5.1. Symmetrie im realen und reziproken Raum

5.2. Intensitäten (Wdh.)

 Im intensitätsgewichteten reziproken Gitter (Beobachtung!) hat jeder Reflex h
 eine Intensität, die sich aus dem Betragsquadrat des Strukturfaktors ergibt:

$$F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \vec{x_j})} = \sum_{j=1}^{N} f_j [\underbrace{\cos\left(2\pi \vec{h} \vec{x_j}\right)}_{A_j} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j}] = \sum_{j=1}^{N} f_j (A_j + iB_j)$$

• $\sum_{i=1}^{N}$ am besten in Gauß'scher Zahlenebene darstellbar (3 Atome):

• messbar nur $I_{\vec{h}} = |F_{\vec{h}}|^2$ (Quadrat der Amplitude, anschaulich: Quadrat der Länge von F)

5.1. Friedel'sches Gesetz

Jaques Friedel

unabhängig von der Symmetrie der Struktur gilt das Friedel'sche Gesetz:

Das intensitätsgewichtete reziproke Gitter ist zentrosymmetrisch.

<u>Beweis:</u> Vergleich von $I_{\vec{h}} = |F_{\vec{h}}|^2$ und $I_{-\vec{h}} = |F_{-\vec{h}}|^2$

• Strukturfaktor des Reflexes \vec{h} (h, k, l):

$$F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \vec{x_j})} = \sum_{j=1}^{N} f_j [\underbrace{\cos\left(2\pi \vec{h} \vec{x_j}\right)}_{A_j} + i \underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j}] = \sum_{j=1}^{N} f_j (A_j + iB_j)$$

• und des 'Gegen'-Reflexes $-\vec{h}$ ($\vec{h}, \vec{k}, \vec{l}$):

$$F_{-\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (-\vec{h}\vec{x_j})} = \sum_{j=1}^{N} f_j [\cos{(-2\pi \vec{h}\vec{x_j})} + i\sin{(-2\pi \vec{h}\vec{x_j})}]$$

• wegen $\cos \phi = \cos (-\phi)$ (Spiegelsymmetrie) und $\sin (-\phi) = -\sin \phi$ (Inversionssymmetrie) folgt:

$$F_{-\vec{h}} = \sum_{j=1}^{N} f_j[\underbrace{\cos\left(2\pi \vec{h} \vec{x_j}\right)}_{A_j} - i\underbrace{\sin\left(2\pi \vec{h} \vec{x_j}\right)}_{B_j}] = \sum_{j=1}^{N} f_j(A_j - iB_j)$$

5.1. Friedel'sches Gesetz: Erklärung in der Gauß'schen Zahlenebene

• Die Strukturfaktoren von h

$$\mathsf{F}_{\vec{h}} = \sum_{j=1}^{\mathsf{N}} f_j(\mathsf{A}_j + \mathsf{i}\mathsf{B}_j) = \sum_{j=1}^{\mathsf{N}} f_j\mathsf{A}_j + \mathsf{i}\sum_{j=1}^{\mathsf{N}} f_j\mathsf{B}_j$$

• und $-\mathbf{h}$

$$F_{-\vec{h}} = \sum_{j=1}^{N} f_j (A_j - iB_j) = \sum_{j=1}^{N} f_j A_j - i \sum_{j=1}^{N} f_j B_j$$

- unterscheiden sich nur im Vorzeichen des Phasenwinkels.
- gemessen wird I = $|F|^2$, das Quadrat der Länge von F in der komplexen Zahlenebene:

5.1. Friedel'sches Gesetz: Erklärung für die Mathematik-Freunde

• Die Strukturfaktoren von \vec{h}

$$\mathsf{F}_{\vec{\mathsf{h}}} = \sum_{j=1}^{\mathsf{N}} \mathsf{f}_{j}(\mathsf{A}_{j} + \mathsf{i}\mathsf{B}_{j}) = \underbrace{\sum_{j=1}^{\mathsf{N}} \mathsf{f}_{j}\mathsf{A}_{j}}_{\alpha} + \mathsf{i} \underbrace{\sum_{j=1}^{\mathsf{N}} \mathsf{f}_{j}\mathsf{B}_{j}}_{\beta} = \alpha + \mathsf{i}\beta$$

• und $-\mathbf{h}$

$$\mathsf{F}_{-\vec{\mathsf{h}}} = \sum_{j=1}^{\mathsf{N}} \mathsf{f}_{j}(\mathsf{A}_{j} - \mathsf{i}\mathsf{B}_{j}) = \underbrace{\sum_{j=1}^{\mathsf{N}} \mathsf{f}_{j}\mathsf{A}_{j}}_{\alpha} - \mathsf{i}\underbrace{\sum_{j=1}^{\mathsf{N}} \mathsf{f}_{j}\mathsf{B}_{j}}_{\beta} = \alpha - \mathsf{i}\beta$$

- sind konjugiert komplex (Unterschied nur im Vorzeichen des Imaginärteils).
- Für den Betrag einer komplexen Zahl gilt (Bronstein, S. 559)

$$|\mathbf{a}| = \sqrt{\mathbf{a}\overline{\mathbf{a}}} = \sqrt{\alpha^2 + \beta^2}$$

• Daraus folgt für die komplexen Zahlen F:

$$|\mathsf{F}_{\vec{\mathsf{h}}}| = |\mathsf{F}_{\vec{-}\mathsf{h}}| = \sqrt{\alpha^2 + \beta^2} \text{ und } |\mathsf{F}_{\vec{\mathsf{h}}}|^2 = |\mathsf{F}_{\vec{-}\mathsf{h}}|^2 = \alpha^2 + \beta^2 \text{ (Pythagoras)}$$

5.1. Symmetrie im realen und reziproken Raum

5.2. Zentrosymmetrische Strukturen

• Zentrosymmetrie: $x,y,z \leftrightarrow -x,-y,-z$

$$\mathsf{F}_{\vec{h}} = \sum_{j=1}^{\mathsf{N}} \mathsf{f}_{j} e^{2\pi i (\vec{h} \vec{x_{j}})} = \sum_{j=1}^{\mathsf{N}/2} \mathsf{f}_{j} [e^{2\pi i (\vec{h} \vec{x_{j}})} + e^{2\pi i (-\vec{h} \vec{x_{j}})}]$$

5.2. Resonante Streuung (Anomale Dispersion)

- wenn λ energetisch etwas oberhalb einer Absorptionskante eines Elementes der Struktur
- → Röntgenstrahlen bewirken Ionisation dieses Elementes
- \mapsto zusätzliche Anteile zum Atomformfaktor f_o:

$$f_o^{anom.} = f_o + \Delta f' + i \Delta f''$$

- ♦ Realteil $\Delta f'$: \oplus oder meist \ominus
- ♦ Imaginärteil: $\Delta f''$: immer \oplus
- Δf weitgehend unabhängig von $\sin \theta$, da innere Elektronen beteiligt
- → besonders Hochwinkelreflexe betroffen

5.2. Resonante Streuung (Anomale Dispersion)

- Auswirkungen:
 - zentrosymmetrische Strukturen:
 - Phasen Φ weichen von $0/\pi$ ab
 - Friedel'sches Gesetz gilt weiterhin
 - azentrische Strukturen:
 - Abweichung vom Friedel'schen Gesetz
- ab 3. Periode (S, Cl) bereits zuverlässige Aussagen zur absoluten Struktur möglich (\mapsto H. Flack)

L: alle 'Leichtatome' S: Schweratom

5.2. Symmetrie im realen und reziproken Raum: Laueklassen

Kristallsystem	Kristallklasse	Lauegruppe	
triklin	1, Ī	Ī	
monoklin	2, m , 2/m	2/m	
orthorhombisch	222, mm2, mmm	mmm	
tetragonal	4, 4̄, 4/m	4/m (niedrig)	
	422, 4 2 <i>m</i> , 4 <i>mm</i> , 4/ <i>mmm</i>	4/ <i>mmm</i> (hoch)	
trigonal	3, 3	3 (niedrig)	
	321, 3 <i>m</i> 1, 3 <i>m</i> 1	3 <i>m</i> 1 (hoch)	
	311, 31 <i>m</i> , 31 <i>m</i>	31 <i>m</i> (hoch)	
hexagonal	6, ō, 6/ <i>m</i>	6/ <i>m</i> (niedrig)	
	622, ē2 <i>m</i> , 6 <i>mm</i> , 6/ <i>mmm</i>	6/ <i>mmm</i> (hoch)	
kubisch	23, m3	mā (niedrig)	
	432, 4 <u>3</u> m, m3 <u></u> m	m3m (hoch)	

Max v. Laue, inkl. Experiment

5.2. Laueklassen: Beispiel

.

5.2. Laueklassen

- Punktsymmetrie des/im Kristall → Punktsymmetrie im reziproken Raum
- wegen Friedel'schem Gesetz → 11 (Laueklassen) statt 32 (Kristallklassen) Punktgruppen
- analog Realraum → asymmetrische Einheit → enthält bereits sämtliche I-Informationen
 - triklin: 1/2; monoklin: 1/4;

orthorhombisch: 1/8 (ein Oktant) ... kubisch, hohe Laueklasse: 1/48

• Test auf Laueklasse (MERGE EQUIVALENTS)

$$R_{int} = \frac{\Sigma |F_{obs}^2 - F_{obs}^2(\text{gemittelt})|}{\Sigma F_{obs}^2}$$

• für die Datensammlung: Redundanz (REDUNDANCY)

5.3. Auslöschungsbedingungen I: Integrale Auslöschungen

• Gesamtzentrierung der Gitter (Realraum)

• \mapsto integrale Auslöschungen (gültig für alle Reflexe h,k,l)

Symbol		zusätzliche	Bedingung für das
		Atompositionen	Auftreten von Reflexen
Р	primitiv	-	-
С	2 fach primitiv	$x + \frac{1}{2}, y + \frac{1}{2}, z$	h+k=2n
I	2 fach primitiv	$x + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$	h+k+l=2n
F	4 fach primitiv	$x + \frac{1}{2}, y + \frac{1}{2}, z$	h+k=2n
		$x + \frac{1}{2}, y, z + \frac{1}{2}$	h+l=2n
		$x, y + \frac{1}{2}, z + \frac{1}{2}$	k+l=2n
R	3 fach primitiv	$x + \frac{1}{3}, y + \frac{2}{3}, z + \frac{2}{3}$	-h+k+l=3n
		$x + \frac{2}{3}, y + \frac{1}{3}, z + \frac{1}{3}$	

- Beweis: Einsetzen in Strukturfaktoren (s.u. für etwas Einfacheres)
- Bravais-Gitter auch im reziproken Raum

5.3. Auslöschungsbedingungen I: Integrale Auslöschungen

5.3. Symmetrie im realen und reziproken Raum

5.3. Auslöschungsbedingungen II: Zonale und serielle Auslöschungen

- alle weiteren Symmetrieelemente mit Translationskomponenten, d.h.
 - Gleitspiegelebenen (a, b, c, n, d)

- \diamond Schraubenachsen (n_m, z.B. 2₁, 3₁ usw.)
- erzeugen weitere Auslöschungen:
 - zonale Auslöschungsbedingungen für Gleitspiegelebenen,
 - z.B. für Äquator-Reflexe 0kl:
 - $\mathbf{k} + \mathbf{l} = 2\mathbf{n} \mapsto n \perp \vec{a}$

•
$$k = 2n \mapsto b \perp \vec{a}$$

- $I = 2n \mapsto c \perp \vec{a}$
- serielle Auslöschungsbedingungen für Schraubenachsen,
 - z.B. für Achs-Reflexe 00I:
 - $I = 2n \mapsto 2_1$ bzw. 4_2 bzw. $6_3 \parallel \vec{c}$
 - $I = 3n \mapsto 3_1 \text{ bzw. } 6_2 \parallel \vec{c}$
 - $I = 4n \mapsto 4_1 \parallel \vec{c}$
 - I = $6n \mapsto 6_1 \parallel \vec{c}$
- vollständige Liste s. I.T.; rechte Spalte bei jeder Raumgruppe

5.3. Serielle Auslöschungen: Beispiel Gleitspiegelebene c $\perp \vec{b}$

- $\mathbf{C} \perp \vec{\mathbf{b}}: \mathbf{x}, \mathbf{y}, \mathbf{z} \leftrightarrow \mathbf{x}, -\mathbf{y}, \mathbf{z} + \frac{1}{2}$
- der Strukturfaktor kann damit unterteilt werden:

$$F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \vec{x_j})} = \sum_{j=1}^{N/2} f_j [e^{2\pi i (hx+ky+lz)} + e^{2\pi i \{hx-ky+l(z+\frac{1}{2})\}}]$$

• für k=0 (h0l-Reflexe) läßt sich vereinfachen:

$$\mathsf{F}_{\mathsf{hOI}} = \sum_{j=1}^{\mathsf{N}/2} \mathsf{f}_j[(\mathsf{e}^{2\pi\mathsf{i}\mathsf{hx}}\mathsf{e}^{2\pi\mathsf{i}\mathsf{lz}})(1+\underbrace{\mathsf{e}^{\pi\mathsf{i}\mathsf{l}}}_{-1?})]$$

- F_{h0l} wird 0, wenn $e^{\pi i l} = -1$ ist.
- Wegen $e^{\pi i l} = \cos \pi l + i \sin \pi l$
- ist dies f
 ür ungeradzahlige I erf
 üllt, da
 - $\diamond \cos |\pi| = -1$
 - $\diamond \sin |\pi| = 0$
- und damit $e^{\pi i l} = -1$ und $F_{h0l} = 0$.

5.3. Auslöschungsbedingungen: Eintrag in den I.T.

00I: (I=2n)

 D_{2h}^{18}

5.3. Auslöschungsbedingungen: Eintrag in den I.T.

Orthor	hombio	C	mmm Ori	C 2/m 2/c $2_1/a$ gin at centre (2/m)	No. 64 [) ¹⁸ 2h
Numbe Wycł and po	er of posit koff notati pint symm	tions, ion, netry	Co-ordinates	of equivalent positions	Conditions limiting possible reflections	
16	a	1	(0,)	$0,0; \frac{1}{2}, \frac{1}{2}, 0)+$	hkli huk-2n	
10	y		x, y, z, x, y, z, x, $\frac{1}{2}$ $\overline{x}, \overline{y}, \overline{z}; \overline{x}, y, z; \overline{x}, \frac{1}{2}$	$-y, \frac{1}{2} + 2, x, \frac{1}{2} + y, \frac{1}{2} - 2, +y, \frac{1}{2} - z; \overline{x}, \frac{1}{2} - y, \frac{1}{2} + z.$	NKI: $H+K=2H$ Okl: (k=2n) h0l: l=2n; (h=2n) hk0: h=2n; (k=2n) h00: (h=2n) Ok0: (k=2n) O0l: (l=2n)	
					Special: as above, plus	
8	f	m	$0, y, z; 0, \bar{y}, \bar{z}; \frac{1}{2}, y$	$z, \frac{1}{2} - z; \frac{1}{2}, \bar{y}, \frac{1}{2} + z.$	no extra conditions	
8	е	2	$\frac{1}{4}$, y, $\frac{1}{4}$; $\frac{3}{4}$, \overline{y} , $\frac{3}{4}$; $\frac{3}{4}$	$, y, \frac{1}{4}; \frac{1}{4}, \overline{y}, \frac{3}{4}.$	hkl: h=2n; (k=2n)	
8	d	2	x, 0, 0; \bar{x} , 0, 0, x, $\frac{1}{2}$	$, \frac{1}{2}; \bar{x}, \frac{1}{2}, \frac{1}{2}.$	hkl: k+l=2n; (l+h=2n)	
8	С	ī	$\frac{1}{4}, \frac{1}{4}, 0; \frac{1}{4}, \frac{3}{4}, 0; \frac{1}{4}$	$, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{2}, \frac{1}{2},$	hkl: h,l=2n; (k=2n)	
4	b	2/m	$\frac{1}{2}, 0, 0; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$			
4	а	2/m	$0, 0, 0; 0, \frac{1}{2}, \frac{1}{2}.$			

5.3. Auslöschungsbedingungen: Beispiel einer Analyse

24 2 2 1	48 hkl - Refle 47 Okl - Refle 78 hOl - Refle 87 hkO - Refle	xe xe xe xe		19 h 10 0 30 0 154 h	00 - R k0 - R 01 - R h1 - R	eflexe eflexe eflexe eflexe	
Interfer	enzbedingung	0sig	verlet 2sig	zt sta 4sig	erker 6sig	als 8sig	Beugungs- symbol
hkl	h+k+l=2n	1190	1044	962	891	835	I – – –
	h+l=2n	1172	1032	953	884	831	B
	h+k=2n	1166	1027	951	896	844	C F
	h+1=2n	1168	1023	946	882	821	A – – –
h00	h=2n	11	11	9	8	8	- 21
	h=4n	15	15	13	12	12	- 41
001	l=2n	12	1	0	0	0	21
	l=4n	21	10	9	9	9	41
	1=3n	18	13	12	12	12	31
	l=6n	24	13	12	12	12	61

5.4. rez. Gitter, Laueklasse, Zentrierung, Beugungssymbol

- Indizierung: reziprokes Gitter, ggf. mit symmetriebedingter Metrik
- Laueklasse: Mittelung über symmetrieäquivalente Daten → R_{int}
- Gesamtzentrierung aus integralen Auslöschungen (Bravais-Zelle)
- Beugungssymbol: Sammlung aller aus den Auslöschungsbedingungen folgenden Symmetrieelemente
 - ◊ für das Beispiel: P63___c
- mögliche Raumgruppen:
 - \diamond für das Beispiel: P6₃/mmc und P6₃mc
- 81 verschiedene Beugungssymbole
5.4. Symmetrie im realen und reziproken Raum (Zusammenfassung)

5.4. Übersicht und Ausblick: realer – reziproker – Patterson-Raum

Raum	reziprok	real	Vektor
Orts-Koord	$\vec{h} = h,k,l$	$\vec{x} = x, y, z$	$\vec{u} = u, v, w; u = x_1 - x_2$
Amplitude	Strukturfaktor F	Elektronendichte ρ	Pattersonfunktion P
	$F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \cdot \vec{x_j})}$ (2)		
	$F_{\vec{h}} = \int \rho_{\vec{x}} e^{2\pi i \vec{h} \vec{x}} dV$ (3)	$ \rho_{\vec{x}} = \frac{1}{V} \sum_{\vec{h}} F_{\vec{h}} e^{-2\pi i \vec{h} \vec{x}} $ (4)	$P_{\vec{u}} = \frac{1}{V} \sum_{\vec{h}} F_{\vec{h}}^2 e^{-2\pi i \vec{h} \vec{u}}$ (5)
			$P_{ec{u}} = rac{1}{V} \int_{V} ho_{ec{x}} ho_{ec{x}+ec{u}} dV$ (6)
Symmetrie	11 Laueklassen	32 Punktgruppen	24 Pattersongruppen
	81 Beugungssymbole	230 Raumgruppen	Harker-Geraden;
	aus F ²		Harker-Schnitte
	keine Translationssymmetrie	translationssymmetrisch	translationssymmetrisch

Literatur, Web-Seiten, Programme

- W. Massa, Kristallstrukturbestimmung, Teubner Studienbücher
- G. H. Stout, L. H. Jensen: X-Ray Structure Determination, Wiley Inters.
- C. Giacovazzo (ed.), Fundamentals of Crystallography, IUCr, Oxford Science Publ.
- G. Phillips, University of Wisconsin, Madison (XRayView3.0)
- G. Chapuis, http://escher.epfl.ch (DiffractOgram)
- R. B. Neder, Th. Proffen: http://discus.sourceforge.net (Discus)
- http://ruby.chemie.uni-freiburg.de/Vorlesung/Seminare/chemkrist09.pdf

DANKE!

